Abstract
Previous studies consider little on using dependency-type messages in the E2E-ABSA task. Studies using dependency-type messages just contact the dependency-type message and word embedding vectors, which may not fully fuse the context feature and information from the dependency type. This paper proposes a new model called Dependency-Type Weighted Graph Convolution Network (DTW-GCN) to compose dependency-type messages and word embedding. We use a type-weighted matrix to combine the dependency-type message, and DTW-GCN could fuse the dependency-type message and word embedding vectors. Experiments conducted on three benchmark datasets verify the effectiveness of our model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, W., Li, X., Deng, Y., Bing, L., Lam, W.: A survey on aspect-based sentiment analysis: tasks, methods, and challenges. IEEE Trans. Knowl. Data Eng. 35, 11019–11038 (2022)
Mitchell, M., Aguilar, J., Wilson, T., Van Durme, B.: Open domain targeted sentiment. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1643–1654 (2013)
Li, R., Chen, H., Feng, F., Ma, Z., Wang, X., Hovy, E.: Dual graph convolutional networks for aspect-based sentiment analysis. In: Proceedings of the 2021 Annual Conference of the Association for Computational Linguistics, pp. 6319–6329 (2021)
Lv, H., Liu, J., Wang, H., Wang, Y., Luo, J., Liu, Y.: Efficient hybrid generation framework for aspect-based sentiment analysis. In: Proceedings of the 2023 Conference of the European Chapter of the Association for Computational Linguistics, pp. 1007–1018 (2023)
Luo, H., Ji, L., Li, T., Duan, N., Jiang, D.: GRACE: gradient harmonized and cascaded labeling for aspect-based sentiment analysis. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 54–64 (2020)
Fei, H., Li, F., Li, C., Wu, S., Li, J., Ji, D.: Inheriting the wisdom of predecessors: a multiplex cascade framework for unified aspect-based sentiment analysis. In: Raedt, L.D. (ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, International Joint Conferences on Artificial Intelligence Organization, pp. 4121–4128 (2022)
Liang, Y., Meng, F., Zhang, J., Chen, Y., Xu, J., Zhou, J.: A dependency syntactic knowledge augmented interactive architecture for end-to-end aspect-based sentiment analysis. Neurocomputing 454, 291–302 (2021)
Mao, Y., Shen, Y., Yu, C., Cai, L.: A joint training dual-MRC framework for aspect based sentiment analysis. Proc. AAAI Conf. Artif. Intell. 35(15), 13543–13551 (2021)
Phan, H.T., Nguyen, N.T., Hwang, D.: Aspect-level sentiment analysis: a survey of graph convolutional network methods. Inf. Fusion 91, 149–172 (2023)
Yan, H., Dai, J., Ji, T., Qiu, X., Zhang, Z.: A unified generative framework for aspect-based sentiment analysis, pp. 2416–2429 (2021)
Mao, Y., Shen, Y., Yang, J., Zhu, X., Cai, L.: Seq2Path: generating sentiment tuples as paths of a tree, pp. 2215–2225 (2022)
Chen, S., Wang, Y., Liu, J., Wang, Y.: Bidirectional machine reading comprehension for aspect sentiment triplet extraction. Proc. AAAI Conf. Artif. Intell. 35(14), 12666-*674 (2021)
Liang, B., Su, H., Gui, L., Cambria, E., Xu, R.: Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowl.-Based Syst. 235, 107643 (2022)
Liang, S., Wei, W., Mao, X.-L., Wang, F., He, Z.: BiSyn-GAT+: Bi-syntax aware graph attention network for aspect-based sentiment analysis. Find. Assoc. Comput. Linguist. ACL 2022, 1835–1848 (2022)
Li, Y., Yin, C., Zhong, S.: Sentence constituent-aware aspect-category sentiment analysis with graph attention networks. In: Zhu, X., Zhang, M., Hong, Yu., He, R. (eds.) NLPCC 2020. LNCS (LNAI), vol. 12430, pp. 815–827. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60450-9_64
Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Proceedings of 52Nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)
Tian, Y., Chen, W., Hu, B., Song, Y., Xia, F.: End-to-end aspect-based sentiment analysis with combinatory categorial grammar. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Findings of the Association for Computational Linguistics: ACL 2023, pp. 13597–13609. Association for Computational Linguistics, Toronto, Canada (2023)
Li, X., Bing, L., Zhang, W., Lam, W.: Exploiting BERT for end-to-end aspect-based sentiment analysis. In: Xu, W., Ritter, A., Baldwin, T., Rahimi, A. (eds.), Proceedings of the 5th Workshop on Noisy User-Generated Text (W-NUT 2019), Association for Computational Linguistics, Hong Kong, China, pp. 34–41 (2019)
Xiang, Y., Zhang, J., Guo, J.: Block-level dependency syntax based model for end-to-end aspect-based sentiment analysis. Neural Netw. 166, 225–235 (2023)
Wang, K., Shen, W., Yang, Y., Quan, X., Wang, R.: Relational graph attention network for aspect-based sentiment analysis. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, pp. 3229–3238 (2020)
Huang, B., Carley, K.: Syntax-aware aspect level sentiment classification with graph attention networks. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China, pp. 5469–5477 (2019)
Yuan, L., Wang, J., Yu, L.-C., Zhang, X.: Graph attention network with memory fusion for aspect-level sentiment analysis. In: Wong, K.-F., Knight, K., Wu, H. (eds.), Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. Association for Computational Linguistics, Suzhou, China, pp. 27–36 (2020)
Hu, M., Peng, Y., Huang, Z., Li, D., Lv, Y.: Open-domain targeted sentiment analysis via span-based extraction and classification. In: Korhonen, A., Traum, D., Màrquez, L. (eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, Italy, pp. 537–546 (2019)
Liu, S., Li, W., Wu, Y., Su, Q., Sun, X.: Jointly modeling aspect and sentiment with dynamic heterogeneous graph neural networks (2020). ArXiv abs/2004.06427
Zhang, C., Li, Q., Song, D.: Aspect-based sentiment classification with aspect-specific graph convolutional networks. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China, pp. 4568–4578 (2019)
Zhou, J., Huang, J.X., Hu, Q.V., He, L.: SK-GCN: modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification. Knowl.-Based Syst. 205, 106292 (2020)
Tang, H., Ji, D., Li, C., Zhou, Q.: Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 6578–6588 (2020)
Chen, C., Teng, Z., Zhang, Y.: Inducing target-specific latent structures for aspect sentiment classification. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, pp. 5596–5607 (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Mu, Y., Shi, S. (2024). Dependency-Type Weighted Graph Convolutional Network on End-to-End Aspect-Based Sentiment Analysis. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 704. Springer, Cham. https://doi.org/10.1007/978-3-031-57919-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-57919-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57918-9
Online ISBN: 978-3-031-57919-6
eBook Packages: Computer ScienceComputer Science (R0)