Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Galled Perfect Transfer Networks

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2024)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14616))

Included in the following conference series:

  • 200 Accesses

Abstract

Predicting horizontal gene transfers often requires comparative sequence data, but recent work has shown that character-based approaches could also be useful for this task. Notably, perfect transfer networks (PTN) explain the character diversity of a set of taxa for traits that are gained once, rarely lost, but that can be transferred laterally. Characterizing the structure of such characters is an important step towards understanding more complex characters. Although efficient algorithms can infer such networks from character data, they can sometimes predict overly complicated transfer histories.

With the goal of recovering the simplest possible scenarios in this model, we introduce galled perfect transfer networks, which are PTNs that are galled trees. Such networks are useful for characters that are incompatible in terms of tree-like evolution, but that do fit in an almost-tree scenario. We provide polynomial-time algorithms for two problems: deciding whether one can add transfer edges to a tree to transform it into a galled PTN, and deciding whether a set of characters are galled-compatible, that is, they can be explained by some galled PTN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. 1.

    Note that we are not aware of complexity results for binary characters on PPNs without the no-loss condition.

  2. 2.

    Suppressing a subdivision node u with parent p and child v consists of removing u and adding an edge from p to v.

  3. 3.

    Note that we adapted this characterization, since in the original definition of PTNs, the taxa were treated as sets of characters instead of the other way around.

References

  1. Alexander, P.A., He, Y., Chen, Y., Orban, J., Bryan, P.N.: The design and characterization of two proteins with 88% sequence identity but different structure and function. Proc. Natl. Acad. Sci. 104(29), 11963–11968 (2007)

    Article  Google Scholar 

  2. Anselmetti, Y., El-Mabrouk, N., Lafond, M., Ouangraoua, A.: Gene tree and species tree reconciliation with endosymbiotic gene transfer. Bioinformatics 37(Supplement_1), i120–i132 (2021)

    Google Scholar 

  3. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: a direct approach. J. Comput. Biol. 10(3–4), 323–340 (2003)

    Article  Google Scholar 

  4. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), i283–i291 (2012). https://doi.org/10.1093/bioinformatics/bts225, http://dx.doi.org/10.1093/bioinformatics/bts225

  5. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_80

    Chapter  Google Scholar 

  6. Boto, L.: Horizontal gene transfer in evolution: facts and challenges. Proc. Roy. Soc. B: Biol. Sci. 277(1683), 819–827 (2010)

    Article  Google Scholar 

  7. Cardona, G., Pons, J.C., Rosselló, F.: A reconstruction problem for a class of phylogenetic networks with lateral gene transfers. Algorithms Mol. Biol. 10(1) (Dec 2015). https://doi.org/10.1186/s13015-015-0059-z, http://dx.doi.org/10.1186/s13015-015-0059-z

  8. Cardona, G., Zhang, L.: Counting and enumerating tree-child networks and their subclasses. J. Comput. Syst. Sci. 114, 84-104 (2020). https://doi.org/10.1016/j.jcss.2020.06.001, http://dx.doi.org/10.1016/j.jcss.2020.06.001

  9. De Jong, G.: Phenotypic plasticity as a product of selection in a variable environment. Am. Nat. 145(4), 493–512 (1995)

    Article  Google Scholar 

  10. El-Kebir, M.: SPhyR: tumor phylogeny estimation from single-cell sequencing data under loss and error. Bioinformatics 34(17), i671–i679 (2018)

    Article  Google Scholar 

  11. El-Kebir, M., Satas, G., Oesper, L., Raphael, B.J.: Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 3(1), 43–53 (2016)

    Article  Google Scholar 

  12. Fernández-Baca, D.: The perfect phylogeny problem. In: Cheng, X.Z., Du, D.Z. (eds.) Steiner Trees in Industry. Combinatorial Optimization, vol. 11, pp. 203–234. Springer, Boston (2001). https://doi.org/10.1007/978-1-4613-0255-1_6

    Chapter  Google Scholar 

  13. Fischer, M., Galla, M., Herbst, L., Long, Y., Wicke, K.: Classes of tree-based networks. Vis. Comput. Ind. Biomed. Art 3(1) (2020). https://doi.org/10.1186/s42492-020-00043-z, http://dx.doi.org/10.1186/s42492-020-00043-z

  14. Geiß, M., Anders, J., Stadler, P.F., Wieseke, N., Hellmuth, M.: Reconstructing gene trees from fitch’s xenology relation. J. Math. Biol. 77(5), 1459–1491 (2018). https://doi.org/10.1007/s00285-018-1260-8, http://dx.doi.org/10.1007/s00285-018-1260-8

  15. Gogarten, J.P., Townsend, J.P.: Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3(9), 679–687 (2005). https://doi.org/10.1038/nrmicro1204, http://dx.doi.org/10.1038/nrmicro1204

  16. Gonçalves, C., et al.: Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. eLife 7 (2018). https://doi.org/10.7554/elife.33034, http://dx.doi.org/10.7554/eLife.33034

  17. Goyal, A.: Horizontal gene transfer drives the evolution of dependencies in bacteria. iScience 25(5), 104312 (2022). https://doi.org/10.1016/j.isci.2022.104312

  18. Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  19. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinform. Comput. Biol. 2(01), 173–213 (2004)

    Article  Google Scholar 

  20. Huson, D.H., Rupp, R., Berry, V., Gambette, P., Paul, C.: Computing galled networks from real data. Bioinformatics 25(12), i85–i93 (2009). https://doi.org/10.1093/bioinformatics/btp217, http://dx.doi.org/10.1093/bioinformatics/btp217

  21. van Iersel, L., Kelk, S., Rupp, R., Huson, D.: Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters. Bioinformatics 26(12), i124–i131 (Jun 2010). https://doi.org/10.1093/bioinformatics/btq202, http://dx.doi.org/10.1093/bioinformatics/btq202

  22. Iersel, L.V., Jones, M., Kelk, S.: A third strike against perfect phylogeny. Syst. Biol. 68(5), 814–827 (2019)

    Article  Google Scholar 

  23. Jones, M., Lafond, M., Scornavacca, C.: Consistency of orthology and paralogy constraints in the presence of gene transfers (2017). https://doi.org/10.48550/ARXIV.1705.01240, https://arxiv.org/abs/1705.01240

  24. Keeling, P.J., Palmer, J.D.: Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9(8), 605–618 (2008). https://doi.org/10.1038/nrg2386, http://dx.doi.org/10.1038/nrg2386

  25. Kelk, S., Scornavacca, C., van Iersel, L.: On the elusiveness of clusters. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(2), 517–534 (2012). https://doi.org/10.1109/TCBB.2011.128

    Article  Google Scholar 

  26. Koonin, E.V., Makarova, K.S., Aravind, L.: Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55(1), 709–742 (2001)

    Article  Google Scholar 

  27. Lafond, M., Hellmuth, M.: Reconstruction of time-consistent species trees. Algorithms Mol. Biol. 15(1) (2020). https://doi.org/10.1186/s13015-020-00175-0, http://dx.doi.org/10.1186/s13015-020-00175-0

  28. Lawrence, J.G., Ochman, H.: Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10(1), 1–4 (2002). https://doi.org/10.1016/S0966-842X(01)02282-X, https://www.sciencedirect.com/science/article/pii/S0966842X0102282X

  29. López Sánchez, A., Lafond, M.: Predicting horizontal gene transfers with perfect transfer networks. Algorithms Mol. Biol. 19(1), 6 (2024)

    Article  Google Scholar 

  30. Menet, H., Daubin, V., Tannier, E.: Phylogenetic reconciliation. PLoS Comput. Biol. 18(11), e1010621 (2022)

    Article  Google Scholar 

  31. Nakhleh, L.: Phylogenetic networks. Ph.D. thesis, The University of Texas at Austin (2004)

    Google Scholar 

  32. Nakhleh, L., Ringe, D., Warnow, T.: Perfect phylogenetic networks: a new methodology for reconstructing the evolutionary history of natural languages. Language 81(2), 382–420 (2005). http://www.jstor.org/stable/4489897

  33. Nesbo, C.L., l’Haridon, S., Stetter, K.O., Doolittle, W.F.: Phylogenetic analyses of two “archaeal” genes in thermotoga maritima reveal multiple transfers between archaea and bacteria. Mol. Biol. Evol. 18(3), 362–375 (2001)

    Google Scholar 

  34. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny. SIAM J. Comput. 33(3), 590–607 (2004)

    Article  MathSciNet  Google Scholar 

  35. Pons, J.C., Semple, C., Steel, M.: Tree-based networks: characterisations, metrics, and support trees. J. Math. Biol. 78(4), 899–918 (2018). https://doi.org/10.1007/s00285-018-1296-9

    Article  MathSciNet  Google Scholar 

  36. Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S.: Configurable pattern-based evolutionary biclustering of gene expression data. Algorithms Mol. Biol. 8(1), 1–22 (2013)

    Article  Google Scholar 

  37. Ravenhall, M., Škunca, N., Lassalle, F., Dessimoz, C.: Inferring horizontal gene transfer. PLOS Comput. Biol. 11(5), e1004095 (2015). https://doi.org/10.1371/journal.pcbi.1004095, http://dx.doi.org/10.1371/journal.pcbi.1004095

  38. Rawat, A., Seifert, G.J., Deng, Y.: Novel implementation of conditional co-regulation by graph theory to derive co-expressed genes from microarray data. BMC Bioinform. 9, 1–9 (2008)

    Article  Google Scholar 

  39. Schaller, D., Lafond, M., Stadler, P.F., Wieseke, N., Hellmuth, M.: Indirect identification of horizontal gene transfer. J. Math. Biol. 83(1) (2021). https://doi.org/10.1007/s00285-021-01631-0, http://dx.doi.org/10.1007/s00285-021-01631-0

  40. Soucy, S.M., Huang, J., Gogarten, J.P.: Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16(8), 472–482 (2015). https://doi.org/10.1038/nrg3962, http://dx.doi.org/10.1038/nrg3962

  41. Thomas, C.M., Nielsen, K.M.: Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3(9), 711–721 (2005)

    Article  Google Scholar 

  42. Wickell, D.A., Li, F.: On the evolutionary significance of horizontal gene transfers in plants. New Phytol. 225(1), 113–117 (2019). https://doi.org/10.1111/nph.16022, http://dx.doi.org/10.1111/nph.16022

  43. Zachar, I., Boza, G.: Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell. Mol. Life Sci. 77(18), 3503–3523 (2020). https://doi.org/10.1007/s00018-020-03462-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alitzel López Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López Sánchez, A., Lafond, M. (2024). Galled Perfect Transfer Networks. In: Scornavacca, C., Hernández-Rosales, M. (eds) Comparative Genomics. RECOMB-CG 2024. Lecture Notes in Computer Science(), vol 14616. Springer, Cham. https://doi.org/10.1007/978-3-031-58072-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58072-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58071-0

  • Online ISBN: 978-3-031-58072-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics