Abstract
Predicting horizontal gene transfers often requires comparative sequence data, but recent work has shown that character-based approaches could also be useful for this task. Notably, perfect transfer networks (PTN) explain the character diversity of a set of taxa for traits that are gained once, rarely lost, but that can be transferred laterally. Characterizing the structure of such characters is an important step towards understanding more complex characters. Although efficient algorithms can infer such networks from character data, they can sometimes predict overly complicated transfer histories.
With the goal of recovering the simplest possible scenarios in this model, we introduce galled perfect transfer networks, which are PTNs that are galled trees. Such networks are useful for characters that are incompatible in terms of tree-like evolution, but that do fit in an almost-tree scenario. We provide polynomial-time algorithms for two problems: deciding whether one can add transfer edges to a tree to transform it into a galled PTN, and deciding whether a set of characters are galled-compatible, that is, they can be explained by some galled PTN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Notes
- 1.
Note that we are not aware of complexity results for binary characters on PPNs without the no-loss condition.
- 2.
Suppressing a subdivision node u with parent p and child v consists of removing u and adding an edge from p to v.
- 3.
Note that we adapted this characterization, since in the original definition of PTNs, the taxa were treated as sets of characters instead of the other way around.
References
Alexander, P.A., He, Y., Chen, Y., Orban, J., Bryan, P.N.: The design and characterization of two proteins with 88% sequence identity but different structure and function. Proc. Natl. Acad. Sci. 104(29), 11963–11968 (2007)
Anselmetti, Y., El-Mabrouk, N., Lafond, M., Ouangraoua, A.: Gene tree and species tree reconciliation with endosymbiotic gene transfer. Bioinformatics 37(Supplement_1), i120–i132 (2021)
Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: a direct approach. J. Comput. Biol. 10(3–4), 323–340 (2003)
Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), i283–i291 (2012). https://doi.org/10.1093/bioinformatics/bts225, http://dx.doi.org/10.1093/bioinformatics/bts225
Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_80
Boto, L.: Horizontal gene transfer in evolution: facts and challenges. Proc. Roy. Soc. B: Biol. Sci. 277(1683), 819–827 (2010)
Cardona, G., Pons, J.C., Rosselló, F.: A reconstruction problem for a class of phylogenetic networks with lateral gene transfers. Algorithms Mol. Biol. 10(1) (Dec 2015). https://doi.org/10.1186/s13015-015-0059-z, http://dx.doi.org/10.1186/s13015-015-0059-z
Cardona, G., Zhang, L.: Counting and enumerating tree-child networks and their subclasses. J. Comput. Syst. Sci. 114, 84-104 (2020). https://doi.org/10.1016/j.jcss.2020.06.001, http://dx.doi.org/10.1016/j.jcss.2020.06.001
De Jong, G.: Phenotypic plasticity as a product of selection in a variable environment. Am. Nat. 145(4), 493–512 (1995)
El-Kebir, M.: SPhyR: tumor phylogeny estimation from single-cell sequencing data under loss and error. Bioinformatics 34(17), i671–i679 (2018)
El-Kebir, M., Satas, G., Oesper, L., Raphael, B.J.: Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 3(1), 43–53 (2016)
Fernández-Baca, D.: The perfect phylogeny problem. In: Cheng, X.Z., Du, D.Z. (eds.) Steiner Trees in Industry. Combinatorial Optimization, vol. 11, pp. 203–234. Springer, Boston (2001). https://doi.org/10.1007/978-1-4613-0255-1_6
Fischer, M., Galla, M., Herbst, L., Long, Y., Wicke, K.: Classes of tree-based networks. Vis. Comput. Ind. Biomed. Art 3(1) (2020). https://doi.org/10.1186/s42492-020-00043-z, http://dx.doi.org/10.1186/s42492-020-00043-z
Geiß, M., Anders, J., Stadler, P.F., Wieseke, N., Hellmuth, M.: Reconstructing gene trees from fitch’s xenology relation. J. Math. Biol. 77(5), 1459–1491 (2018). https://doi.org/10.1007/s00285-018-1260-8, http://dx.doi.org/10.1007/s00285-018-1260-8
Gogarten, J.P., Townsend, J.P.: Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3(9), 679–687 (2005). https://doi.org/10.1038/nrmicro1204, http://dx.doi.org/10.1038/nrmicro1204
Gonçalves, C., et al.: Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. eLife 7 (2018). https://doi.org/10.7554/elife.33034, http://dx.doi.org/10.7554/eLife.33034
Goyal, A.: Horizontal gene transfer drives the evolution of dependencies in bacteria. iScience 25(5), 104312 (2022). https://doi.org/10.1016/j.isci.2022.104312
Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. MIT Press, Cambridge (2014)
Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinform. Comput. Biol. 2(01), 173–213 (2004)
Huson, D.H., Rupp, R., Berry, V., Gambette, P., Paul, C.: Computing galled networks from real data. Bioinformatics 25(12), i85–i93 (2009). https://doi.org/10.1093/bioinformatics/btp217, http://dx.doi.org/10.1093/bioinformatics/btp217
van Iersel, L., Kelk, S., Rupp, R., Huson, D.: Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters. Bioinformatics 26(12), i124–i131 (Jun 2010). https://doi.org/10.1093/bioinformatics/btq202, http://dx.doi.org/10.1093/bioinformatics/btq202
Iersel, L.V., Jones, M., Kelk, S.: A third strike against perfect phylogeny. Syst. Biol. 68(5), 814–827 (2019)
Jones, M., Lafond, M., Scornavacca, C.: Consistency of orthology and paralogy constraints in the presence of gene transfers (2017). https://doi.org/10.48550/ARXIV.1705.01240, https://arxiv.org/abs/1705.01240
Keeling, P.J., Palmer, J.D.: Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9(8), 605–618 (2008). https://doi.org/10.1038/nrg2386, http://dx.doi.org/10.1038/nrg2386
Kelk, S., Scornavacca, C., van Iersel, L.: On the elusiveness of clusters. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(2), 517–534 (2012). https://doi.org/10.1109/TCBB.2011.128
Koonin, E.V., Makarova, K.S., Aravind, L.: Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55(1), 709–742 (2001)
Lafond, M., Hellmuth, M.: Reconstruction of time-consistent species trees. Algorithms Mol. Biol. 15(1) (2020). https://doi.org/10.1186/s13015-020-00175-0, http://dx.doi.org/10.1186/s13015-020-00175-0
Lawrence, J.G., Ochman, H.: Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10(1), 1–4 (2002). https://doi.org/10.1016/S0966-842X(01)02282-X, https://www.sciencedirect.com/science/article/pii/S0966842X0102282X
López Sánchez, A., Lafond, M.: Predicting horizontal gene transfers with perfect transfer networks. Algorithms Mol. Biol. 19(1), 6 (2024)
Menet, H., Daubin, V., Tannier, E.: Phylogenetic reconciliation. PLoS Comput. Biol. 18(11), e1010621 (2022)
Nakhleh, L.: Phylogenetic networks. Ph.D. thesis, The University of Texas at Austin (2004)
Nakhleh, L., Ringe, D., Warnow, T.: Perfect phylogenetic networks: a new methodology for reconstructing the evolutionary history of natural languages. Language 81(2), 382–420 (2005). http://www.jstor.org/stable/4489897
Nesbo, C.L., l’Haridon, S., Stetter, K.O., Doolittle, W.F.: Phylogenetic analyses of two “archaeal” genes in thermotoga maritima reveal multiple transfers between archaea and bacteria. Mol. Biol. Evol. 18(3), 362–375 (2001)
Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny. SIAM J. Comput. 33(3), 590–607 (2004)
Pons, J.C., Semple, C., Steel, M.: Tree-based networks: characterisations, metrics, and support trees. J. Math. Biol. 78(4), 899–918 (2018). https://doi.org/10.1007/s00285-018-1296-9
Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S.: Configurable pattern-based evolutionary biclustering of gene expression data. Algorithms Mol. Biol. 8(1), 1–22 (2013)
Ravenhall, M., Škunca, N., Lassalle, F., Dessimoz, C.: Inferring horizontal gene transfer. PLOS Comput. Biol. 11(5), e1004095 (2015). https://doi.org/10.1371/journal.pcbi.1004095, http://dx.doi.org/10.1371/journal.pcbi.1004095
Rawat, A., Seifert, G.J., Deng, Y.: Novel implementation of conditional co-regulation by graph theory to derive co-expressed genes from microarray data. BMC Bioinform. 9, 1–9 (2008)
Schaller, D., Lafond, M., Stadler, P.F., Wieseke, N., Hellmuth, M.: Indirect identification of horizontal gene transfer. J. Math. Biol. 83(1) (2021). https://doi.org/10.1007/s00285-021-01631-0, http://dx.doi.org/10.1007/s00285-021-01631-0
Soucy, S.M., Huang, J., Gogarten, J.P.: Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16(8), 472–482 (2015). https://doi.org/10.1038/nrg3962, http://dx.doi.org/10.1038/nrg3962
Thomas, C.M., Nielsen, K.M.: Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3(9), 711–721 (2005)
Wickell, D.A., Li, F.: On the evolutionary significance of horizontal gene transfers in plants. New Phytol. 225(1), 113–117 (2019). https://doi.org/10.1111/nph.16022, http://dx.doi.org/10.1111/nph.16022
Zachar, I., Boza, G.: Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell. Mol. Life Sci. 77(18), 3503–3523 (2020). https://doi.org/10.1007/s00018-020-03462-6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
López Sánchez, A., Lafond, M. (2024). Galled Perfect Transfer Networks. In: Scornavacca, C., Hernández-Rosales, M. (eds) Comparative Genomics. RECOMB-CG 2024. Lecture Notes in Computer Science(), vol 14616. Springer, Cham. https://doi.org/10.1007/978-3-031-58072-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-58072-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58071-0
Online ISBN: 978-3-031-58072-7
eBook Packages: Computer ScienceComputer Science (R0)