Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Knowledge Graph Embeddings via Kernelized Random Projections

  • Conference paper
  • First Online:
Big Data Analytics in Astronomy, Science, and Engineering (BDA 2023)

Abstract

Knowledge Graph Completion (KGC) aims to predict missing entities or relations in knowledge graph but it becomes computationally expensive as KG scales. Existing research focuses on bilinear pooling-based factorization methods (LowFER, TuckER) to solve this problem. These approaches introduce too many trainable parameters which obstruct the deployment of these techniques in many real-world scenarios. In this paper, we introduce a novel parameter-efficient framework, KGRP which a) approximates bilinear pooling using Kernelized Random Projection matrix b) employs CNN for the better fusion of entities and relations to infer missing links. Our experimental results show that KGRP has 73% fewer parameters as compared to the state-of-the-art approaches (LowFER, TuckER) for the knowledge graph completion task while retaining 88% performance for the best baseline. Furthermore, we also provide novel insights on the interpretability of relation embeddings. We also test the effectiveness of KGRP on a large-scale recruitment knowledge graph of 0.25M entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We will use the terms ‘Knowledge Graph Completion’ and ‘Link Prediction’ interchangeably in the manuscript.

References

  1. Achlioptas, D.: Database-friendly random projections: johnson-lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)

    Article  MathSciNet  Google Scholar 

  2. Amin, S., Varanasi, S., Dunfield, K.A., Neumann, G.: LowFER: low-rank bilinear pooling for link prediction. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 257–268. PMLR, 13–18 July 2020. http://proceedings.mlr.press/v119/amin20a.html

  3. Amin, S., Varanasi, S., Dunfield, K.A., Neumann, G.: Lowfer: low-rank bilinear pooling for link prediction. In: International Conference on Machine Learning, pp. 257–268. PMLR (2020)

    Google Scholar 

  4. Balazevic, I., Allen, C., Hospedales, T.: Tucker: tensor factorization for knowledge graph completion. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (2019). https://doi.org/10.18653/v1/d19-1522, http://dx.doi.org/10.18653/v1/D19-1522

  5. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. SIGMOD ’08, Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1376616.1376746

  6. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Neural Information Processing Systems (NIPS), pp. 1–9. South Lake Tahoe, United States, December 2013. https://hal.archives-ouvertes.fr/hal-00920777

  7. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 26 (2013)

    Google Scholar 

  8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018). https://ojs.aaai.org/index.php/AAAI/article/view/11573

  9. Fukui, A., Park, D.H., Yang, D., Rohrbach, A., Darrell, T., Rohrbach, M.: Multimodal compact bilinear pooling for visual question answering and visual grounding. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 457–468. Association for Computational Linguistics, Austin, Texas, November 2016. https://doi.org/10.18653/v1/D16-1044, https://www.aclweb.org/anthology/D16-1044

  10. Gao, Y., Beijbom, O., Zhang, N., Darrell, T.: Compact bilinear pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 317–326 (2016)

    Google Scholar 

  11. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (volume 1: Long papers), pp. 687–696 (2015)

    Google Scholar 

  12. Li, P., Hastie, T.J., Church, K.W.: Very sparse random projections. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 287–296. KDD ’06, Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1150402.1150436

  13. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)

    Google Scholar 

  14. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

    Google Scholar 

  15. López-Sánchez, D., Arrieta, A.G., Corchado, J.M.: Data-independent random projections from the feature-space of the homogeneous polynomial kernel. Pattern Recognit. 82, 130–146 (2018)

    Article  Google Scholar 

  16. López-Sánchez, D., Arrieta, A.G., Corchado, J.M.: Compact bilinear pooling via kernelized random projection for fine-grained image categorization on low computational power devices. Neurocomputing 398, 411–421 (2020)

    Article  Google Scholar 

  17. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995). https://doi.org/10.1145/219717.219748

  18. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space (2019)

    Google Scholar 

  19. Taheri, S., Toygar, Ö.: On the use of DAG-CNN architecture for age estimation with multi-stage features fusion. Neurocomputing 329, 300–310 (2019)

    Article  Google Scholar 

  20. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural Comput. 12(6), 1247–1283 (2000)

    Article  Google Scholar 

  21. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text for joint embedding of text and knowledge bases. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1499–1509. Association for Computational Linguistics, Lisbon, Portugal, September 2015. https://doi.org/10.18653/v1/D15-1174, https://www.aclweb.org/anthology/D15-1174

  22. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 2071–2080. PMLR, New York, New York, USA, 20–22 June 2016. http://proceedings.mlr.press/v48/trouillon16.html

  23. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  24. West, R., Gabrilovich, E., Murphy, K., Sun, S., Gupta, R., Lin, D.: Knowledge base completion via search-based question answering. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 515–526. WWW ’14, Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2566486.2568032

  25. Yang, B., Yih, S.W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the International Conference on Learning Representations (ICLR) 2015. ICLR (2015). https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goyal, N., Goel, A., Garg, T., Sachdeva, N., Kumaraguru, P. (2024). Efficient Knowledge Graph Embeddings via Kernelized Random Projections. In: Sachdeva, S., Watanobe, Y. (eds) Big Data Analytics in Astronomy, Science, and Engineering. BDA 2023. Lecture Notes in Computer Science, vol 14516. Springer, Cham. https://doi.org/10.1007/978-3-031-58502-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58502-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58501-2

  • Online ISBN: 978-3-031-58502-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics