Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Fast and Efficient Algorithm for Construction of Discrete Voronoi Diagram

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2011))

Included in the following conference series:

  • 93 Accesses

Abstract

Unlike the cells of a Voronoi diagram in the real space the cells of a discrete Voronoi diagram in the discrete space has finite number of points. Hence in the literature we find a significant difference in the approach to the construction of the discrete voronoi diagram as compared to the construction of the Voronoi Diagram in the real space. In the discrete space the construction of discrete Voronoi diagram for a set of given sites is the process of assigning each pixel in the discrete space to its nearest site. Although there are many algorithms for the construction of discrete Voronoi diagram using the above mentioned approach, none of these algorithms found in the literature take into consideration the geometrical properties of the Voronoi Diagram while constructing it. We present a novel approach for the construction of discrete Voronoi Diagram for a given set of points based on a purely digital geometric approach taking into consideration its geometry. Since the circle is defined as the locus of a point that is equidistant from a given point, our algorithm constructs digital circles around each site, to assign the pixels that are nearest to that site using an iterative circle growing technique. The key idea of the proposed algorithm is that in the i-th iteration (initially \(i=1\)) we assign pixels which are at a distance given by the open interval \((i-\frac{1}{2}, i+\frac{1}{2})\) from each site, provided, they are not already assigned to any other site. Thus, at any instant of time a pixel, p is assigned to a site s if and only if s is its nearest site in the digital space. Our algorithm terminates once all pixels have been assigned to the nearest site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aurenhammer, F.: Voronoi diagrams-a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991). https://doi.org/10.1145/116873.116880

    Article  Google Scholar 

  2. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    Google Scholar 

  3. Wein, R., van den Berg, J.P., Halperin, D.: The visibility-voronoi complex and its applications, Computational Geometry 36(1), 66–87 (2007). special Issue on the 21st European Workshop on Computational Geometry. https://doi.org/10.1016/j.comgeo.2005.11.007. https://www.sciencedirect.com/science/article/pii/S0925772106000496

  4. Wang, X., et al.: Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes, Comput.-Aided Des. 58, 51–61 (2015). solid and Physical Modeling 2014. https://doi.org/10.1016/j.cad.2014.08.023. https://www.sciencedirect.com/science/article/pii/S0010448514001924

  5. Kim, D.S.: A single beta-complex solves all geometry problems in a molecule, pp. 254–260 (2009). https://doi.org/10.1109/ISVD.2009.41

  6. Pal, S., Dutta, R., Bhowmick, P.: Circular arc segmentation by curvature estimation and geometric validation. Int. J. Image Graph. 12(04), 1250024 (2012). https://doi.org/10.1142/S0219467812500246

    Article  MathSciNet  Google Scholar 

  7. She, B., Zhu, X., ye, X., Su, K., Lee, J.: Weighted network Voronoi diagrams for local spatial analysis. Comput. Environ. Urban Syst. 52, 70–80 (2015). https://doi.org/10.1016/j.compenvurbsys.2015.03.005

  8. Dhar, S., Pal, S.: Surface reconstruction: roles in the field of computer vision and computer graphics. Int. J. Image Graph. 22(01), 2250008 (2022). https://doi.org/10.1142/S0219467822500085

    Article  Google Scholar 

  9. Lindow, N., Baum, D., Hege, H.-C.: Voronoi-based extraction and visualization of molecular paths. IEEE Trans. Visual Comput. Graphics 17, 2025–34 (2011). https://doi.org/10.1109/TVCG.2011.259

    Article  Google Scholar 

  10. Brown, K.Q.: Voronoi diagrams from convex hulls. Inf. Proc. Lett. 9(5), 223–228 (1979). https://doi.org/10.1016/0020-0190(79)90074-7

    Article  Google Scholar 

  11. Shivanasab, P., Ali Abbaspour, R.: An incremental algorithm for simultaneous construction of 2D Voronoi diagram and Delaunay triangulation based on a face-based data structure. Adv. Eng. Softw. 169, 103129 (2022). https://www.sciencedirect.com/science/article/pii/S0965997822000400

  12. Jida, S., Ouanan, M., Aksasse, B.: Color image segmentation using Voronoi diagram and 2D histogram. Int. J. Tomogr. Simul. 30, 14–20 (2017)

    Google Scholar 

  13. Šeda, M., Pich, V.: Robot motion planning using generalised Voronoi diagrams. target 1 (2008) q2

    Google Scholar 

  14. Biswas, R., Bhowmick, P.: Construction of persistent Voronoi diagram on 3D digital plane, pp. 93–104 (2017). https://doi.org/10.1007/978-3-319-59108-7_8

  15. Zhao, S., Evans, T.M., Zhou, X.: Three-dimensional Voronoi analysis of monodisperse ellipsoids during triaxial shear. Powder Technol. 323, 323–336 (2018). https://doi.org/10.1016/j.powtec.2017.10.023. https://www.sciencedirect.com/science/article/pii/S0032591017308197

  16. Surajkanta, Y., Pal, S.: Recognition of spherical segments using number theoretic properties of Isothetic covers. Multimedia Tools Appl., 1–24 (2022). https://doi.org/10.1007/s11042-022-14182-3

  17. Fortune, S.: A sweepline algorithm for Voronoi diagrams. In: Proceedings of the Second Annual Symposium on Computational Geometry, SCG ’86. Association for Computing Machinery, New York, pp. 313-322 (1986). https://doi.org/10.1145/10515.10549

  18. Ferreira, N., Poco, J., Vo, H.T., Freire, J., Silva, C.T.: Visual exploration of big Spatio-temporal urban data: a study of New York city taxi trips. IEEE Trans. Visual Comput. Graphics 19(12), 2149–2158 (2013). https://doi.org/10.1109/TVCG.2013.226

    Article  Google Scholar 

  19. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational Geometry: Algorithms and Applications, 3rd ed. Springer Cham (2008). https://www.worldcat.org/oclc/227584184

  20. Saha, D., Das, N., Pal, S.: A digital-geometric approach for computing area coverage in wireless sensor networks. In: Natarajan, R. (ed.) Distributed Computing and Internet Technology, pp. 134–145. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-04483-5_15

    Chapter  Google Scholar 

  21. Allen, S.R., Barba, L., Iacono, J., Langerman, S.: Incremental Voronoi diagrams. CoRR abs/1603.08485 (2016). http://arxiv.org/abs/1603.08485

  22. Sherbrooke, E., Patrikalakis, N., Brisson, E.: Computation of the medial axis transform of 3-D Polyhedra (1995). https://doi.org/10.1145/218013.218059

  23. Albers, G., Guibas, L.J., Mitchell, J.S.B., Roos, T.: Voronoi diagrams of moving points. Int. J. Comput. Geom. Appl. 08(03), 365–379 (1998). https://doi.org/10.1142/S0218195998000187

    Article  MathSciNet  Google Scholar 

  24. Meijster, A., Roerdink, J., Hesselink, W.: A general algorithm for computing distance transforms in linear time. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol. 18, pp. 331–340. Springer, Boston (2002). https://doi.org/10.1007/0-306-47025-X_36

    Chapter  Google Scholar 

  25. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians and related problems. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, pp. 106-113. Association for Computing Machinery, New York (1998). https://doi.org/10.1145/276698.276718

  26. Borradaile, G., Klein, P.N., Mathieu, C.: A polynomial-time approximation scheme for euclidean steiner forest (2015)

    Google Scholar 

  27. Sugihara, K., Iri, M.: A robust topology-oriented incremental algorithm for Voronoi diagrams. Int. J. Comput. Geom. Appl. 04(02), 179–228 (1994). https://doi.org/10.1142/S0218195994000124

    Article  MathSciNet  Google Scholar 

  28. Hoff, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99. ACM Press/Addison-Wesley Publishing Co., USA, pp. 277–286 (1999). https://doi.org/10.1145/311535.311567

  29. Rong, G., Tan, T.-S.: Jump flooding in GPU with applications to Voronoi diagram and distance transform, vol. 2006, pp. 109–116 (2006). https://doi.org/10.1145/1111411.1111431

  30. Masood, T.B., Malladi, H.K., Natarajan, V.: Facet-JFA: faster computation of discrete Voronoi diagrams. In: Proceedings of the 2014 Indian Conference on Computer Vision Graphics and Image Processing, ICVGIP ’14. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2683483.2683503

  31. Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construction of a digital circle. Discr. Appl. Math. 156(12), 2381–2399 (2008). https://doi.org/10.1016/j.dam.2007.10.022. https://www.sciencedirect.com/science/article/pii/S0166218X07004817

  32. Bera, S., Bhowmick, P., Bhattacharya, B.: On the characterization of absentee-voxels in a spherical surface and volume of revolution in \({\mathbb{z}}^3\) z 3. J. Math. Imaging Vision 56 (2016). https://doi.org/10.1007/s10851-016-0654-8

  33. Andres, E., Richaume, L., Largeteau-Skapin, G.: Digital surface of revolution with hand-drawn generatrix. J. Math. Imaging Vis. (2017). https://doi.org/10.1007/s10851-017-0708-6

  34. Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706 (1994). https://doi.org/10.1016/0097-8493(94)90164-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumi Dhar .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhar, S., Pal, S. (2024). A Fast and Efficient Algorithm for Construction of Discrete Voronoi Diagram. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2011. Springer, Cham. https://doi.org/10.1007/978-3-031-58535-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58535-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58534-0

  • Online ISBN: 978-3-031-58535-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics