Abstract
The field of machine learning is subject to an increasing interest in models that are not only accurate but also interpretable and robust, thus allowing their end users to understand and trust AI systems. This paper presents a novel method for learning a set of optimal quantile regression trees. The advantages of this method are that (1) it provides predictions about the complete conditional distribution of a target variable without prior assumptions on this distribution; (2) it provides predictions that are interpretable; (3) it learns a set of optimal quantile regression trees without compromising algorithmic efficiency compared to learning a single tree.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source code is available at https://github.com/valentinlemaire/pydl8.5.
- 2.
We however recommend setting the number of quantiles to be lower than the minimum support in each leaf to avoid skewed estimations.
References
Aglin, G., Nijssen, S., Schaus, P.: Learning optimal decision trees using caching branch-and-bound search. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 3146–3153 (2020). https://doi.org/10.1609/aaai.v34i04.5711
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Cousins, C., Riondato, M.: CaDET: interpretable parametric conditional density estimation with decision trees and forests. Mach. Learn. 108(8), 1613–1634 (2019). https://doi.org/10.1007/s10994-019-05820-3
Demirović, E., et al.: MurTree: optimal decision trees via dynamic programming and search. J. Mach. Learn. Res. 23(1), 1–47 (2022). https://doi.org/10.5555/3586589.3586615
Du, M., Liu, N., Hu, X.: Techniques for interpretable machine learning. Commun. ACM 63(1), 68–77 (2019). https://doi.org/10.1145/3359786
Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3429–3437 (2017). https://doi.org/10.1109/ICCV.2017.371
Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89 (2018). https://doi.org/10.1109/DSAA.2018.00018
Koenker, R., Hallock, K.F.: Quantile regression. J. Econ. Perspect. 15(4), 143–156 (2001). https://doi.org/10.1257/jep.15.4.143
Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350–1371 (2015). https://doi.org/10.1214/15-aoas848
Meinshausen, N.: Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006). https://doi.org/10.5555/1248547.1248582
Nijssen, S., Fromont, É.: Mining optimal decision trees from itemset lattices. In: Knowledge Discovery and Data Mining (2007). https://doi.org/10.1145/1281192.1281250
John, O.O.: Robustness of quantile regression to outliers. Am. J. Appl. Math. Stat. 3(2), 86–88 (2015). https://doi.org/10.12691/ajams-3-2-8
Quinlan, J.R., et al.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence. vol. 92, pp. 343–348. World Scientific (1992). https://doi.org/10.1142/9789814536271
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7
Terrell, G.R., Scott, D.W.: Variable Kernel Density estimation. Ann. Stat. 20(3), 1236–1265 (1992). https://doi.org/10.1214/aos/1176348768
Wang, S., Wang, S., Wang, D.: Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation. Energy Procedia 158, 6446–6451 (2019). https://doi.org/10.1016/j.egypro.2019.01.169, innovative Solutions for Energy Transitions
Zhang, S., Wang, Y., Zhang, Y., Wang, D., Zhang, N.: Load probability density forecasting by transforming and combining quantile forecasts. Appl. Energy 277, 115600 (2020). https://doi.org/10.1016/j.apenergy.2020.115600
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lemaire, V., Aglin, G., Nijssen, S. (2024). Interpretable Quantile Regression by Optimal Decision Trees. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14642. Springer, Cham. https://doi.org/10.1007/978-3-031-58553-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-58553-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58555-5
Online ISBN: 978-3-031-58553-1
eBook Packages: Computer ScienceComputer Science (R0)