Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interpretable Quantile Regression by Optimal Decision Trees

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXII (IDA 2024)

Abstract

The field of machine learning is subject to an increasing interest in models that are not only accurate but also interpretable and robust, thus allowing their end users to understand and trust AI systems. This paper presents a novel method for learning a set of optimal quantile regression trees. The advantages of this method are that (1) it provides predictions about the complete conditional distribution of a target variable without prior assumptions on this distribution; (2) it provides predictions that are interpretable; (3) it learns a set of optimal quantile regression trees without compromising algorithmic efficiency compared to learning a single tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code is available at https://github.com/valentinlemaire/pydl8.5.

  2. 2.

    We however recommend setting the number of quantiles to be lower than the minimum support in each leaf to avoid skewed estimations.

References

  1. Aglin, G., Nijssen, S., Schaus, P.: Learning optimal decision trees using caching branch-and-bound search. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 3146–3153 (2020). https://doi.org/10.1609/aaai.v34i04.5711

  2. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  3. Cousins, C., Riondato, M.: CaDET: interpretable parametric conditional density estimation with decision trees and forests. Mach. Learn. 108(8), 1613–1634 (2019). https://doi.org/10.1007/s10994-019-05820-3

    Article  MathSciNet  Google Scholar 

  4. Demirović, E., et al.: MurTree: optimal decision trees via dynamic programming and search. J. Mach. Learn. Res. 23(1), 1–47 (2022). https://doi.org/10.5555/3586589.3586615

  5. Du, M., Liu, N., Hu, X.: Techniques for interpretable machine learning. Commun. ACM 63(1), 68–77 (2019). https://doi.org/10.1145/3359786

    Article  Google Scholar 

  6. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3429–3437 (2017). https://doi.org/10.1109/ICCV.2017.371

  7. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89 (2018). https://doi.org/10.1109/DSAA.2018.00018

  8. Koenker, R., Hallock, K.F.: Quantile regression. J. Econ. Perspect. 15(4), 143–156 (2001). https://doi.org/10.1257/jep.15.4.143

    Article  Google Scholar 

  9. Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model. Ann. Appl. Stat. 9(3), 1350–1371 (2015). https://doi.org/10.1214/15-aoas848

  10. Meinshausen, N.: Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006). https://doi.org/10.5555/1248547.1248582

  11. Nijssen, S., Fromont, É.: Mining optimal decision trees from itemset lattices. In: Knowledge Discovery and Data Mining (2007). https://doi.org/10.1145/1281192.1281250

  12. John, O.O.: Robustness of quantile regression to outliers. Am. J. Appl. Math. Stat. 3(2), 86–88 (2015). https://doi.org/10.12691/ajams-3-2-8

  13. Quinlan, J.R., et al.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence. vol. 92, pp. 343–348. World Scientific (1992). https://doi.org/10.1142/9789814536271

  14. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019). https://doi.org/10.1038/s42256-019-0048-x

    Article  Google Scholar 

  15. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

  16. Terrell, G.R., Scott, D.W.: Variable Kernel Density estimation. Ann. Stat. 20(3), 1236–1265 (1992). https://doi.org/10.1214/aos/1176348768

    Article  MathSciNet  Google Scholar 

  17. Wang, S., Wang, S., Wang, D.: Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation. Energy Procedia 158, 6446–6451 (2019). https://doi.org/10.1016/j.egypro.2019.01.169, innovative Solutions for Energy Transitions

  18. Zhang, S., Wang, Y., Zhang, Y., Wang, D., Zhang, N.: Load probability density forecasting by transforming and combining quantile forecasts. Appl. Energy 277, 115600 (2020). https://doi.org/10.1016/j.apenergy.2020.115600

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Lemaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lemaire, V., Aglin, G., Nijssen, S. (2024). Interpretable Quantile Regression by Optimal Decision Trees. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14642. Springer, Cham. https://doi.org/10.1007/978-3-031-58553-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58553-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58555-5

  • Online ISBN: 978-3-031-58553-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics