Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

S+t-SNE - Bringing Dimensionality Reduction to Data Streams

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXII (IDA 2024)

Abstract

We present S+t-SNE, an adaptation of the t-SNE algorithm designed to handle infinite data streams. The core idea behind S+t-SNE is to update the t-SNE embedding incrementally as new data arrives, ensuring scalability and adaptability to handle streaming scenarios. By selecting the most important points at each step, the algorithm ensures scalability while keeping informative visualisations. By employing a blind method for drift management, the algorithm adjusts the embedding space, which facilitates the visualisation of evolving data dynamics. Our experimental evaluations demonstrate the effectiveness and efficiency of S+t-SNE, whilst highlighting its ability to capture patterns in a streaming scenario. We hope our approach offers researchers and practitioners a real-time tool for understanding and interpreting high-dimensional data.

P. C. Vieira and J. P. Montrezol—Equal contribution, order defined by coin flip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    github.com/PedrV/S–t-SNE.

  2. 2.

    riverml.xyz.

References

  1. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(86), 2579–2605 (2008)

    Google Scholar 

  2. Agrahari, S., Singh, A.K.: Concept drift detection in data stream mining : a literature review. J. King Saud Univ. Comput. Inf. Sci. 34(10), 9523–9540 (2022)

    Google Scholar 

  3. Alsakran, J., Chen, Y., Zhao, Y., Yang, J., Luo, D.: StreamIT: dynamic visualization and interactive exploration of text streams. In: 2011 IEEE Pacific Visualization Symposium, pp. 131–138. IEEE (2011)

    Google Scholar 

  4. Basalaj, W.: Incremental multidimensional scaling method for database visualization. In: Visual Data Exploration and Analysis VI, vol. 3643, pp. 149–158. SPIE (1999)

    Google Scholar 

  5. Bengio, Y., Paiement, J., Vincent, P., Delalleau, O., Roux, N., Ouimet, M.: Out-of-sample extensions for LLE, ISOMAP, MDS, eigenmaps, and spectral clustering. Adv. Neural. Inf. Process. Syst. 16, 1–8 (2003)

    Google Scholar 

  6. Jenkins, O.C., Matarić, M.J.: A spatio-temporal extension to Isomap nonlinear dimension reduction. In: Proceedings of the Twenty-first International Conference on Machine Learning, p. 56 (2004)

    Google Scholar 

  7. Joia, P., Coimbra, D., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local affine multidimensional projection. IEEE Trans. Visual Comput. Graph. 17(12), 2563–2571 (2011)

    Article  Google Scholar 

  8. Kouropteva, O., Okun, O., Pietikäinen, M.: Incremental locally linear embedding. Pattern Recogn. 38(10), 1764–1767 (2005)

    Article  Google Scholar 

  9. Law, M.H., Jain, A.K.: Incremental nonlinear dimensionality reduction by manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 377–391 (2006)

    Article  Google Scholar 

  10. Law, M.H., Zhang, N., Jain, A.K.: Nonlinear manifold learning for data stream. In: Proceedings of the 2004 SIAM International Conference on Data Mining, pp. 33–44. SIAM (2004)

    Google Scholar 

  11. Maneewongvatana, S., Mount, D.M.: Analysis of approximate nearest neighbor searching with clustered point sets. CoRR cs.CG/9901013 (1999)

    Google Scholar 

  12. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction (2018)

    Google Scholar 

  13. Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans. Visual Comput. Graph. 14(3), 564–575 (2008)

    Article  Google Scholar 

  14. Paulovich, F.V., Eler, D.M., Poco, J., Botha, C.P., Minghim, R., Nonato, L.G.: Piece wise Laplacian-based projection for interactive data exploration and organization. In: Computer Graphics Forum, vol. 30, pp. 1091–1100. Wiley Online Library (2011)

    Google Scholar 

  15. Poličar, P.G., Stražar, M., Zupan, B.: openTSNE: a modular python library for t-SNE dimensionality reduction and embedding, August 2019

    Google Scholar 

  16. Rauber, P.E., Falcao, A.X., Telea, A.C., et al.: Visualizing time-dependent data using dynamic t-SNE (2016)

    Google Scholar 

  17. Schuon, S., Durković, M., Diepold, K., Scheuerle, J., Markward, S.: Truly incremental locally linear embedding. In: CoTeSys 1st International Workshop on Cognition for Technical Systems (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro C. Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

C. Vieira, P., Montrezol, J.P., T. Vieira, J., Gama, J. (2024). S+t-SNE - Bringing Dimensionality Reduction to Data Streams. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14642. Springer, Cham. https://doi.org/10.1007/978-3-031-58553-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58553-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58555-5

  • Online ISBN: 978-3-031-58553-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics