Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Post-quantum Security of Tweakable Even-Mansour, and Applications

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2024 (EUROCRYPT 2024)

Abstract

The tweakable Even-Mansour construction yields a tweakable block cipher from a public random permutation. We prove post-quantum security of tweakable Even-Mansour when attackers have quantum access to the random permutation but only classical access to the secretly-keyed construction, the relevant setting for most real-world applications. We then use our results to prove post-quantum security—in the same model—of the symmetric-key schemes Chaskey (an ISO-standardized MAC), Elephant (an AEAD finalist of NIST’s lightweight cryptography standardization effort), and a variant of Minalpher (an AEAD second-round candidate of the CAESAR competition).

J. Katz—Work done in part while at the University of Maryland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The mild assumption on \(q_Q\) can be avoided at the expense of an additive term of \(\mathcal {O}(q_C \cdot 2^{-\kappa /2}\cdot ( n+ \log |\mathcal T|))\) in the bound.

  2. 2.

    Alternatively, the techniques of [6] can be used to turn the adversary into one that uses a fixed query schedule; the overall bound would be unchanged.

  3. 3.

    As in [1], the case of an inverse query is entirely symmetric.

  4. 4.

    Minalpher can also be used as a MAC, but here we focus on the AEAD scheme.

References

  1. Alagic, G., Bai, C., Katz, J., Majenz, C.: Post-quantum security of the Even-Mansour cipher. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 458–487. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_17

  2. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Elephant v2. Technical report, NIST (2021). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf

  3. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Yu., Schrottenloher, A.: Quantum attacks without superposition queries: the offline Simon’s algorithm. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_20

    Chapter  Google Scholar 

  4. Bonnetain, X., Schrottenloher, A., Sibleyras, F.: Beyond quadratic speedups in quantum attacks on symmetric schemes. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology—Eurocrypt 2022, Part III. LNCS, vol. 13277, pp. 315–344. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_12

  5. Cojocaru, A., Garay, J., Song, F.: Generalized hybrid search and applications (2023). https://ia.cr/2023/798

  6. Don, J., Fehr, S., Huang, Y.-H.: Adaptive versus static multi-oracle algorithms, and quantum security of a split-key PRF. In: Kiltz, E., Vaikuntanathan, V. (eds.) 20th Theory of Cryptography Conference—TCC 2022, Part I. LNCS, vol. 13747, pp. 33–51. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22318-1_2

  7. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogramming in the QROM. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology—2021, Part I. LNCS, vol. 13090, pp. 637–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_22, https://eprint.iacr.org/2020/1361

  8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 212–219. ACM Press (1996)

    Google Scholar 

  9. Hamoudi, Y., Liu, Q., Sinha, M.: Quantum-classical tradeoffs in the random oracle model (2022). https://arxiv.org/abs/2211.12954

  10. Hosoyamada, A., Sasaki, Y.: Cryptanalysis against symmetric-key schemes with online classical queries and offline quantum computations. In: Smart, N. (eds.) Topics in Cryptology—Cryptographers’ Track at the RSA Conference (CT-RSA) 2018, vol. 10808, pp. 198–218. LNCS. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_11

  11. Jaeger, J., Song, F., Tessaro, S.: Quantum key-length extension. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part I. LNCS, vol. 13042, pp. 209–239. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_8

    Chapter  Google Scholar 

  12. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8

    Chapter  Google Scholar 

  13. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: Proceedings of IEEE International Symposium on Information Theory, pp. 2682–2685. IEEE (2010)

    Google Scholar 

  14. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: Proceedings of International Symposium on Information Theory and its Applications, pp. 312–316. IEEE (2012)

    Google Scholar 

  15. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_19

    Chapter  Google Scholar 

  16. Rosmanis, A.: Hybrid quantum-classical search algorithms (2022). https://arxiv.org/abs/2202.11443

  17. Sasaki, Y., et al.: Minalpher v1.1 (2015). https://competitions.cr.yp.to/caesar-submissions.html

  18. Turan, M.S., et al.: Status report on the second round of the NIST lightweight cryptography standardization process. NIST IR 8369 (2021)

    Google Scholar 

  19. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9

    Chapter  Google Scholar 

Download references

Acknowledgments

Work of Gorjan Alagic, Chen Bai, and Jonathan Katz was supported in part by NSF award CNS-2154705. Gorjan Alagic also acknowledges support from the U.S. Army Research Office under Grant Number W911NF-20-1-0015, the U.S. Department of Energy under Award Number DE-SC0020312, and the AFOSR under Award Number FA9550-20-1-0108. Work of Christian Majenz was funded by an NWO VENI grant (Project No. VI.Veni.192.159) and a DFF Sapere Aude grant “IM-3PQC” (Grant Id. 10.46540/2064-00034B). Work of Patrick Struck was funded by the Bavarian State Ministry of Science and the Arts in the framework of the bidt Graduate Center for Postdocs (while working at University of Regensburg) and the Hector Foundation II.

Gorjan would like to thank Yu Sasaki for suggesting to analyze Minalpher using the results of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorjan Alagic .

Editor information

Editors and Affiliations

A Proof of New Resampling Lemma

A Proof of New Resampling Lemma

We now restate and prove Lemma 3.

Lemma 7

Let \(F\subset \mathcal {P}(n)\). Consider the following experiment involving a quantum distinguisher \(\mathcal {D}\):

  • Phase 1: Choose uniform \(P \in \mathcal {P}(n)\), and give \(\mathcal {D}\) quantum access to P. \(\mathcal {D}\) outputs \((D,\tau )\), where D is a distribution on \(\{0,1\}^n\) and \(\tau \in F\).

  • Phase 2: Sample \(\hat{s}\leftarrow D\), set \(s_0=\tau \circ P(\hat{s})\), and choose \(s_1 \leftarrow \{0,1\}^n\). Let \(P^{(0)}=P\) and define \(P^{(1)} = P \circ \textsf{swap}_{s_0,\,s_1} \).

Let \(\varepsilon =2 \cdot \mathbb E_{(D,\tau )\leftarrow \mathcal D^P}\left[ \max _{x \in \{0,1\}^n} \Pr _{x' \leftarrow D}[x'=x]\right] \). For any \(\mathcal {D}\) making at most q queries to P in phase 1,

$$\begin{aligned} &\left| \Pr [\mathcal {D} \text{ outputs } \text{1 } \mid b=1] - \Pr [\mathcal {D} \text{ outputs } \text{1 } \mid b=0]\right| \\ &\le \sqrt{\varepsilon }\cdot \left( 1+\sqrt{q+\log \left( \frac{11\,F|}{\sqrt{\varepsilon }}\right) }\right) . \end{aligned}$$

Proof

Note that \(s_1=s_0\) then \(P^{(0)}=P^{(1)}\). Thus, the distinguishing advantage of \(\mathcal {D}\) is upper bounded by its distinguishing advantage conditioned on \(s_1\ne s_0\), and this is what we analyze in the rest of the proof.

Given \(s_1 \ne s_0\), let \(H \subset \{0,1\}^n\) be a set of size \(2^{n-1}\) containing \(s_0\) but not \(s_1\), and let M be a bijection between H and \(\{0,1\}^n\setminus H\) that maps \(s_0\) to \(s_1\). Define

$$\begin{aligned} \langle x\rangle ={\left\{ \begin{array}{ll} \{x, M(x)\}&{}\text { if }x\in H\\ \{x, M^{-1}(x)\}&{}\text { if }x\notin H \end{array}\right. } . \end{aligned}$$

We use the plain superposition oracle for permutations as defined, e.g., by Alagic et al. [1] to simulate the permutation P. The resampling experiment with a superposition in place of P acts on quantum registers X (query input), Y (query output), E (adversary memory), and F (the oracle simulation’s internal register). The oracle register F is partitioned into \(2^n\) registers \(F_x\), indexed by permutation inputs x. The initial state is

$$\begin{aligned} |\eta \rangle _F = \left( 2^n !\right) ^{-1/2}\sum _{\pi \in \mathcal {P}(n)}|\pi \rangle _F , \end{aligned}$$

where \(|\pi \rangle _F = \bigotimes _x |\pi (x)\rangle _{F_x}\).

We begin by defining a basis \(B_{M}\) of \(\mathbb {C}\mathcal {P}(n)=\textrm{span}\{|\pi \rangle : \pi \in \mathcal {P}(n)\}\). Define the relation \(R_M\subset \mathcal {P}(n)\times \mathcal {P}(n)\) such that

$$\begin{aligned} (\pi ,\sigma )\in R_M \Leftrightarrow \{\pi (x), \pi (M(x))\}=\left\{ \sigma (x), \sigma (M(x))\right\} \text { for all }x\in H , \end{aligned}$$

with the corresponding equivalence classes

$$\begin{aligned}{}[\pi ]_M =\{\sigma \in \mathcal {P}(n) : (\pi ,\sigma )\in R_M\} . \end{aligned}$$

We denote the set of all equivalence classes by \(\mathcal {P}(n)/R_M\). For any \(x, x' \in \{0,1\}^n\) and \(c \in \{0,1\}\), define the quantum state

$$\begin{aligned} |\varPsi ^c_{x,x'}\rangle =\frac{1}{\sqrt{2}}\left( |x\rangle |x'\rangle +(-1)^c|x'\rangle |x\rangle \right) . \end{aligned}$$

Define \(\varGamma _M = \mathcal {P}(n)/R_M\times \{0,1\}^H\). Although \(\varGamma _M\) and the equivalence classes \([\pi ]_M\) depend on M, we will sometimes suppress this in the notation.

For each pair \(([\pi ], y) \in \varGamma \) we define a vector \(|([\pi ], y)\rangle _F\) as follows. Let \(\pi \) be such that \(\pi (x)>\pi (M(x))\) for all \(x\in H\), where “<” denotes lexicographic order; we call this \(\pi \) the canonical representative of \([\pi ]\). Define

$$\begin{aligned} |([\pi ], y)\rangle _F {:}{=}\bigotimes _{x\in H}\Big |{\varPsi ^{y_x}_{\pi (x),\pi (M(x))}}\Big \rangle _{F_xF_{M(x)}} . \end{aligned}$$

Observe that if \([\pi ]=[\sigma ]\) and \(y=y'\) then \(\left\langle ([\pi ], y) \mid ([\sigma ], y') \right\rangle =1\), and otherwise \(\left\langle ([\pi ], y) \mid ([\sigma ], y') \right\rangle =0\). The set

$$\begin{aligned} B_{M}=\left\{ |([\pi ], y)\rangle : ([\pi ], y) \in \varGamma \right\} \end{aligned}$$

is thus an orthonormal set. To see that it forms a basis of \(\mathbb {C}\mathcal {P}(n)\), observe that \(|B_M|=|\mathcal {P}(n)|\). It follows that any state \(|\varphi \rangle _{XYEF}\) can be decomposed as

$$\begin{aligned} |\varphi \rangle _{XYEF}=\sum _{([\pi ], y)\in \varGamma }|\varphi ([\pi ], y)\rangle _{XYE}\otimes |([\pi ], y)\rangle _F , \end{aligned}$$

where \(|\varphi ([\pi ], y)\rangle \) are subnormalized such that

$$\begin{aligned} \sum _{([\pi ], y)\in \varGamma }\Vert |\varphi ([\pi ], y)\rangle \Vert ^2=1 . \end{aligned}$$

Define \(\varGamma _j =\{ ([\pi ], y) \in \varGamma : |y| \le j\}\), where |y| denotes Hamming weight.

Claim

Let \(|\phi _q\rangle _{XYEF}\) be the global state after the (unitary part of the) distinguisher has made q queries in phase 1 to a superposition oracle initialized in any state \(|\tilde{\tau }\rangle \) such that \(\left\langle ([\pi ],y) \mid \tilde{\tau } \right\rangle =0\) for all \(y\ne 0\). Then for all y with \(|y|>q\), we have \(|\,\phi _q([\pi ]_M, y)\,\rangle =0\).

Proof

We prove the claim by induction on q. The base case \(q=0\) holds by assumption. For the inductive step, say the claim holds for \(q-1\), and recall that

$$\begin{aligned} |\phi _q\rangle _{XYEF}=U_{XYE}O_{XYF}|\phi _{q-1}\rangle _{XYEF} . \end{aligned}$$

By the induction hypothesis we can decompose

$$\begin{aligned} |\phi _{q-1}\rangle _{XYEF}=\sum _{([\pi ], y)\in \varGamma _{q-1}}|\psi _{q-1}([\pi ], y)\rangle _{XYE}\otimes |([\pi ], y)\rangle _F . \end{aligned}$$

Using this decomposition and a linearity argument, it suffices to show that for \(|y|\le q-1\), the state \(O_{XYF}|x\rangle _X|y\rangle _Y|([\pi ], y)\rangle _F\) is supported on basis vectors \(|([\pi '], y')\rangle _F\) with \(|y'| \le q\). This follows from the fact that

$$\begin{aligned} O_{XYF}|x\rangle _X = |x\rangle _X\otimes O^{(x)}_{YF_x} . \end{aligned}$$

for some operator \(O^{(x)}\). This establishes the claim.    \(\square \)

Next, define the projector

$$\begin{aligned} \varPi ^{\le q}_F {:}{=}\sum _{([\pi ], y)\in \varGamma _q}|([\pi ], y)\rangle \langle ([\pi ], y)|_F \end{aligned}$$

and let \(\varPi ^{\pm }=\frac{1}{2}(\mathbbm {1}\pm \textsf{Swap})\) be the projectors onto the symmetric and antisymmetric subspaces of \(\mathbb {C}^{2^n}\otimes \mathbb {C}^{2^n}\).

We will rely on the following claim:

Claim

For any \(m\in \mathbb {N}\) we have

$$\begin{aligned} \mathop {\textrm{Pr}}\limits _{\sigma \leftarrow \mathcal {P}(n)}\left[ \exists \tau \in F, S\subset \{0,1\}^n\; \forall x\in S : |S|=m\wedge \tau \circ \sigma (x)\in \langle x\rangle \right] \le 11\cdot 2^{-m}\cdot |F| , \end{aligned}$$

Proof

For fixed \(\tau \in F\) and \(S\subset \{0,1\}^n\) of size m, the number of permutations P for which \(P(x) \in \langle x \rangle \) for all \(x \in S\) is at most \(2^m \cdot (2^n-m)!\). Thus,

$$\begin{aligned} \mathop {\textrm{Pr}}\limits _{\sigma \leftarrow \mathcal {P}(n)}\left[ \forall x\in S:\tau \circ \sigma (x)\in \langle x\rangle \right] \le 2^m\frac{(2^n-m)!}{2^n!} . \end{aligned}$$

A union bound over all \(\tau \) and S yields

$$\begin{aligned} \mathop {\textrm{Pr}}\limits _{\sigma \leftarrow \mathcal {P}(n)}\left[ \exists \tau \in F, S\subset \{0,1\}^n \text { with } |S|=m\; \forall x\in S:\tau \circ \sigma (x)\in \langle x\rangle \right] \le \frac{|F|2^m}{m!} . \end{aligned}$$

Using \(11 m!\ge 4^m\) proves the claim.    \(\square \)

We now return to the proof of Lemma 3. Let \(\Sigma ^{\le m}_F\) be the projector onto the subspace of \(\mathbb {C}\mathcal {P}(n)\) spanned by the permutations \(\pi \) such that

$$\begin{aligned} \left| \left\{ x\in \{0,1\}^n \mid \forall \tau \in F: \tau \circ \pi (x)\in \langle x\rangle \right\} \right| \le m . \end{aligned}$$

The claim implies

$$\begin{aligned} \left\| |\eta \rangle -\frac{1}{\sqrt{\Vert \Sigma ^{\le m}_F|\eta \rangle \Vert }}\Sigma ^{\le m}_F|\eta \rangle \right\| \le 2\cdot \sqrt{11\cdot 2^{-m}|F|} . \end{aligned}$$

Note that \(\varPi ^{\le 0}\Sigma ^{\le m}|\eta \rangle =\Sigma ^{\le m}|\eta \rangle \). We analyze the resampling experiment where the random permutation is replaced by a superposition oracle initialized with \(\frac{1}{\sqrt{\Vert \Sigma ^{\le m}_F|\eta \rangle \Vert }}\Sigma ^{\le m}_F|\eta \rangle _F\).

Let \(|\psi \rangle _{XYEF}\) denote the global state after phase 1, conditioned on a particular pair \((D,\tau )\) output by the distinguisher. As in [7], we can relax the task of the distinguisher as follows: instead of merely providing access to an oracle interface acting on \(|\psi \rangle _{XYEF}\) for \(b=0\) and \(\textsf{Swap}_{F_{s_0}F_{s_1}}|\psi \rangle _{XYEF}\) for \(b=1\), we give the distinguisher arbitrary access to all registers; the distinguisher’s task is then to distinguish those quantum states.

For \(x\in \{0,1\}^n\), define the projector \(Q^{\langle x\rangle }=\sum _{y\in \langle x\rangle }|y\rangle \langle y|\). In the following, z is a variable that corresponds to the result of measuring \(F_{\hat{s}}\), i.e., \(\tau (z)=s_0\). Setting

$$\begin{aligned} \varPi _{\psi ,\hat{s},z} = \frac{1}{\left\| |z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| ^2}|z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle \langle \psi |_{XYEF}|z\rangle \langle z|_{F_{\hat{s}}} , \end{aligned}$$

it follows that

$$\begin{aligned} & 2\Pr [b=b'\mid (D,H,M),s_0]-1\\ &\le \frac{1}{2} \left\| \varPi _{\psi ,\hat{s},z} - \textsf{Swap}_{F_{\langle \tau (z)\rangle }}\varPi _{\psi ,\hat{s},z}\textsf{Swap}_{F_{\langle \tau (z)\rangle }}\right\| _1\\ &=\frac{1}{2}\left\| \varPi _{\psi ,\hat{s},z}\left( \mathbbm {1}-\textsf{Swap}\right) _{F_{\langle \tau (z)\rangle }}+\left( \mathbbm {1}-\textsf{Swap}\right) _{F_{\langle \tau (z)\rangle }}\varPi _{\psi ,\hat{s},z}\textsf{Swap}_{F_{\langle \tau (z)\rangle }}\right\| _1\\ &\le \left\| \varPi _{\psi ,\hat{s},z}\varPi ^-_{F_{\langle \tau (z)\rangle }}\right\| _1+\left\| \varPi ^-_{F_{\langle \tau (z)\rangle }}\varPi _{\psi ,\hat{s},z}\textsf{Swap}_{F_{\langle \tau (z)\rangle }}\right\| _1\\ &=\frac{2}{\left\| |z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| }\left\| \varPi ^-_{F_{\langle \tau (z)\rangle }}|z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| _2 . \end{aligned}$$

(The second inequality is the triangle inequality.) Taking the expectation over \(\hat{s}\leftarrow D\) and z, we get

$$\begin{aligned} &2\Pr [b=b'\mid (D,H,M)]-1 \nonumber \\ &\le 2\mathbb E_{\hat{s},z}\frac{1}{\left\| |z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| }\left\| \varPi ^-_{F_{\langle \tau (z)\rangle }}|z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| _2 \nonumber \\ &\le 2\sqrt{\mathbb E_{\hat{s},z}\frac{1}{\left\| |z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| }\left\| \varPi ^-_{F_{\langle \tau (z)\rangle }}|z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| ^2} \nonumber \\ &=2\sqrt{\sum _{\hat{s}, z}D(\hat{s})\left\| \varPi ^-_{F_{\langle \tau (z)\rangle }}|z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| ^2} , \end{aligned}$$
(6)

where the first inequality is Jensen’s inequality.

It remains to prove the following claim:

Claim

For any pair \((D,\tau )\) and any normalized state \(|\varphi \rangle _{XYEF}\) such that

$$\begin{aligned} \varPi ^{\le q}_F|\varphi \rangle _{XYEF}=|\varphi \rangle _{XYEF} \;\; \text{ and } \;\; \Sigma ^{\le m}_F|\varphi \rangle _{XYEF}=|\varphi \rangle _{XYEF} , \end{aligned}$$

we have

$$\begin{aligned} \sum _{\hat{s}, z}D(\hat{s})\left\| \varPi ^-_{F_{\langle \tau (z)\rangle }}|z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| ^2 \le (m+ q) \varepsilon _D . \end{aligned}$$

Proof

Observe that

$$\begin{aligned} \varPi ^-\Big |{\varPsi ^{0}_{\pi (x),\pi (M(x))}}\Big \rangle =0 \;\; \text {and} \;\; \varPi ^-\Big |{\varPsi ^{1}_{\pi (x),\pi (M(x))}}\Big \rangle =\Big |{\varPsi ^{1}_{\pi (x),\pi (M(x))}}\Big \rangle \end{aligned}$$

for all x and all canonical representatives \(\pi \). It follows that

$$\begin{aligned} \varPi ^-_{F_{s_0}F_{s_1}}|\varphi \rangle _{XYEF}=\sum _{\begin{array}{c} ([\pi ], y)\in \varGamma _q:\\ y_{s_0}=1 \end{array}}|\varphi ([\pi ], y)\rangle _{XYE}\otimes |([\pi ], y)\rangle _F . \end{aligned}$$

We can now bound

$$\begin{aligned} & \sum _{\hat{s}, z}D(\hat{s})\left\| \varPi ^-_{F_{\langle \tau (z)\rangle }}|z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| ^2\\ &\le \sum _{\hat{s}}\sum _{z: \hat{s}\in \langle \hat{\tau }(z)\rangle }D(\hat{s})\left\| |z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| ^2\\ &+ \sum _{\hat{s}}\sum _{z: \hat{s}\notin \langle \hat{\tau }(z)\rangle }D(\hat{s})\left\| \left( \varPi ^-_{F_{\langle \tau (z)\rangle }}\otimes |z\rangle \langle z|_{F_{\hat{s}}}\right) |\psi \rangle _{XYEF}\right\| ^2 . \end{aligned}$$

We bound the two terms separately, beginning with the second. We decompose

$$\begin{aligned} |\psi \rangle _{XYEF}=\sum _{([\pi ],y)\in \varGamma _q}|\psi ([\pi ], y)\rangle _{XYE}\otimes |([\pi ], y)\rangle _F \end{aligned}$$

and denote the only element of \(\langle x\rangle \cap H\) by \(\tilde{x}\). We have

$$\begin{aligned} {} & {} {\sum _{\hat{s}}\sum _{z: \hat{s}\notin \langle \hat{\tau }(z)\rangle }D(\hat{s})\left\| \left( \varPi ^-_{F_{\langle \tau (z)\rangle }}\otimes |z\rangle \langle z|_{F_{\hat{s}}}\right) |\psi \rangle _{XYEF}\right\| ^2} \\ {} & {} \,\,\,=\sum _{\hat{s}}\sum _{z: \hat{s}\notin \langle \hat{\tau }(z)\rangle }D(\hat{s})\sum _{([\pi ],y)\in \varGamma _q}\left\| \left( \varPi ^-_{F_{\langle \tau (z)\rangle }}\otimes |z\rangle \langle z|_{F_{\hat{s}}}\right) |\psi ([\pi ], y)\rangle _{XYE}\otimes |([\pi ], y)\rangle _F\right\| ^2\\ {} & {} \,\,\,=\sum _{([\pi ],y)\in \varGamma _q}\sum _{\begin{array}{c} \hat{s}\notin \langle \tau \circ \pi (x)\rangle :\\ y_{\tilde{\pi (x)}}=1 \end{array}}D(\hat{s})\left\| |\psi ([\pi ], y)\rangle _{XYE}\right\| ^2\\ {} & {} \,\,\,\le \sum _{([\pi ],y)\in \varGamma _q}q\varepsilon _D\left\| |\psi ([\pi ], y)\rangle _{XYE}\right\| ^2 \; = \; q\cdot \varepsilon _D . \end{aligned}$$

For the first term, we have \(\Sigma ^{\le m}_F|\varphi \rangle _{XYEF}=|\varphi \rangle _{XYEF}\), i.e., for any permutation \(\pi \) in the support of this state there are at most m values x such that \(\tau \circ \pi (x)\in \langle x\rangle \). For the second term, we have \(\Sigma ^{\le m}_F|\varphi \rangle _{XYEF}=|\varphi \rangle _{XYEF}\), i.e., \(|\varphi \rangle \) is supported on basis states \(|[\pi ],y\rangle \) where \(\pi \) has at most m fixed points. Using essentially the same chain of inequalities as for the second term, we get

$$\begin{aligned} \sum _{\hat{s}}\sum _{z: \hat{s}\in \langle \hat{\tau }(z)\rangle }D(\hat{s})\left\| |z\rangle \langle z|_{F_{\hat{s}}}|\psi \rangle _{XYEF}\right\| ^2 \le m\varepsilon _D . \end{aligned}$$

This completes the proof.    \(\square \)

Combining the above claim with (6), taking the expectation over \((D,\tau )\), and applying Jensen’s inequality one more time results in the bound

$$\begin{aligned} \left| \Pr [\mathcal {D} \text{ outputs } \text{1 } \mid b=1] - \Pr [\mathcal {D} \text{ outputs } \text{1 } \mid b=0]\right| \le \sqrt{(q+m)\varepsilon } \end{aligned}$$

for the modified resampling experiment and thus

$$\begin{aligned} \left| \Pr [\mathcal {D} \text{ outputs } \text{1 } \mid b=1] - \Pr [\mathcal {D} \text{ outputs } \text{1 } \mid b=0]\right| \le \sqrt{(q+m)\varepsilon }+11\cdot 2^{-m}|F| . \end{aligned}$$

Setting \(m=\log \left( \frac{11 |F|}{\sqrt{\varepsilon }}\right) \) we get

$$\begin{aligned} {} & {} {\left| \Pr [\mathcal {D} \text{ outputs } \text{1 } \mid b=1] - \Pr [\mathcal {D} \text{ outputs } \text{1 } \mid b=0]\right| } \\ {} & {} \qquad \qquad \qquad \qquad \qquad \quad \,\,\, \le \sqrt{\varepsilon }\left( 1+\sqrt{q+\log \left( 11\frac{|F|}{\sqrt{\varepsilon }}\right) }\right) , \end{aligned}$$

matching the lemma.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alagic, G., Bai, C., Katz, J., Majenz, C., Struck, P. (2024). Post-quantum Security of Tweakable Even-Mansour, and Applications. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14651. Springer, Cham. https://doi.org/10.1007/978-3-031-58716-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58716-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58715-3

  • Online ISBN: 978-3-031-58716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics