Abstract
In the consensus problem, n parties want to agree on a common value, even if some of them are corrupt and arbitrarily misbehave. If the parties have a common input m, then they must agree on m.
Protocols solving consensus assume either a synchronous communication network, where messages are delivered within a known time, or an asynchronous network with arbitrary delays. Asynchronous protocols only tolerate \(t_a < n/3\) corrupt parties. Synchronous ones can tolerate \(t_s < n/2\) corruptions with setup, but their security completely breaks down if the synchrony assumptions are violated.
Network-agnostic consensus protocols, as introduced by Blum, Katz, and Loss [TCC’19], are secure regardless of network conditions, tolerating up to \(t_s\) corruptions with synchrony and \(t_a\) without, under provably optimal assumptions \(t_a \le t_s\) and \(2t_s + t_a < n\). Despite efforts to improve their efficiency, all known network-agnostic protocols fall short of the asymptotic complexity of state-of-the-art purely synchronous protocols.
In this work, we introduce a novel technique to compile any synchronous and any asynchronous consensus protocols into a network-agnostic one. This process only incurs a small constant number of overhead rounds, so that the compiled protocol matches the optimal round complexity for synchronous protocols. Our compiler also preserves under a variety of assumptions the asymptotic communication complexity of state-of-the-art synchronous and asynchronous protocols. Hence, it closes the current efficiency gap between synchronous and network-agnostic consensus.
As a plus, our protocols support \(\ell \)-bit inputs, and can be extended to achieve communication complexity \(\mathcal {O}(n^2\kappa + \ell n)\) under the assumptions for which this is known to be possible for purely synchronous protocols.
A full version of this paper is available at https://eprint.iacr.org/2024/317.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The protocol \(\textsf{ABA}^*\) should also have certain termination properties if the network is synchronous, but such details are not needed to appreciate this technical overview.
- 2.
Grades 0 and 1 suffice for \(\textsf{SBA}^*\) with binary inputs. Expanding the grade range is only necessary for multi-valued inputs, but incurs no asymptotic round or communication complexity overhead, which is why we do not consider the cases separately.
- 3.
The \(\textsf {ABA}\) in [18] is secure statically, or adaptively with a one-time CRS.
- 4.
This coin protocol is secure in the random oracle model.
- 5.
An \(\textsf{SBA}\) protocol concurrent with our work uses threshold signatures to achieve \(\mathcal {O}(nf\kappa )\) complexity, where \(f \le t_s \le \frac{(1 - \varepsilon )n}{2}\) is the actual number of malicious parties [13]. Our work only considers the worst case \(f = t_s\).
- 6.
Since \(2t_s + t_a < n\) is required, this assumption is without loss of generality. One can simply consider \(\delta = (n - 2t_s - t_a)/n\).
- 7.
Actually, \(t_a\)-validity from \(\textsf {ABA}^*\) suffices for \(\textsf {HBA}\).
- 8.
Adaptively secure sub-quadratic extension is possible in the atomic-send model [4].
References
Appan, A., Chandramouli, A., Choudhury, A.: Perfectly-secure synchronous mpc with asynchronous fallback guarantees. In: Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, pp. 92–102 (2022)
Attiya, H., Censor, K.: Lower bounds for randomized consensus under a weak adversary. In: Bazzi, R.A., Patt-Shamir, B. (eds.) 27th ACM Symposium Annual on Principles of Distributed Computing, pp. 315–324. Association for Computing Machinery (Aug 2008). https://doi.org/10.1145/1400751.1400793
Bacho, R., Collins, D., Liu-Zhang, C.D., Loss, J.: Network-agnostic security comes (almost) for free in DKG and MPC. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology – CRYPTO 2023, Part I. LNCS, vol. 14081, pp. 71–106. Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/978-3-031-38557-5_3
Bhangale, A., Liu-Zhang, C.D., Loss, J., Nayak, K.: Efficient adaptively-secure byzantine agreement for long messages. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022, Part I. LNCS, vol. 13791, pp. 504–525. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/978-3-031-22963-3_17
Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous fallback guarantees. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 131–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_6
Blum, E., Liu-Zhang, C.-D., Loss, J.: Always have a backup plan: fully secure synchronous MPC with asynchronous fallback. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 707–731. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_25
Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987). https://doi.org/10.1016/0890-5401(87)90054-X
Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantipole: Practical asynchronous byzantine agreement using cryptography (extended abstract). In: Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, p. 123–132. PODC ’00, Association for Computing Machinery, New York, NY, USA (2000). https://doi.org/10.1145/343477.343531
Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In: 25th Annual ACM Symposium on Theory of Computing, pp. 42–51. ACM Press (May 1993). https://doi.org/10.1145/167088.167105
Deligios, G., Hirt, M., Liu-Zhang, C.-D.: Round-efficient byzantine agreement and multi-party computation with asynchronous fallback. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 623–653. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_21
Deligios, G., Liu-Zhang, C.D.: Synchronous perfectly secure message transmission with optimal asynchronous fallback guarantees. Cryptology ePrint Archive, Report 2022/1397 (2022). https://eprint.iacr.org/2022/1397
Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983). https://doi.org/10.1137/0212045
Elsheimy, F., Tsimos, G., Papamanthou, C.: Deterministic byzantine agreement with adaptive \(o(n\cdot f)\) communication. Cryptology ePrint Archive, Paper 2023/1723 (2023). https://eprint.iacr.org/2023/1723
Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: 20th Annual ACM Symposium on Theory of Computing, pp. 148–161. ACM Press (May 1988). https://doi.org/10.1145/62212.62225
Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)
Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential consensus. In: Borowsky, E., Rajsbaum, S. (eds.) 22nd ACM Symposium Annual on Principles of Distributed Computing, pp. 211–220. Association for Computing Machinery (Jul 2003). https://doi.org/10.1145/872035.872066
Fitzi, M., Hirt, M.: Optimally efficient multi-valued Byzantine agreement. In: Ruppert, E., Malkhi, D. (eds.) 25th ACM Symposium Annual on Principles of Distributed Computing, pp. 163–168. Association for Computing Machinery (Jul 2006). https://doi.org/10.1145/1146381.1146407
Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Efficient asynchronous byzantine agreement without private setups. In: 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), pp. 246–257 (2022). https://doi.org/10.1109/ICDCS54860.2022.00032
Ghinea, D., Goyal, V., Liu-Zhang, C.D.: Round-optimal byzantine agreement. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT 2022, Part I. Lecture Notes in Computer Science, vol. 13275, pp. 96–119. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-06944-4_4
Ghinea, D., Liu-Zhang, C.D., Wattenhofer, R.: Optimal synchronous approximate agreement with asynchronous fallback. In: Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing, pp. 70–80 (2022)
Ghinea, D., Liu-Zhang, C.D., Wattenhofer, R.: Multidimensional approximate agreement with asynchronous fallback. Cryptology ePrint Archive (2023)
Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. In: Jung, J., Holz, T. (eds.) USENIX Security 2015: 24th USENIX Security Symposium, pp. 129–144. USENIX Association (Aug 2015)
Karlin, A., Yao, A.: Probabilistic lower bounds for byzantine agreement. Unpublished document (1986)
Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agreement. In: Dwork, C. (ed.) Advances in Cryptology – CRYPTO 2006. Lecture Notes in Computer Science, vol. 4117, pp. 445–462. Springer, Heidelberg (Aug 2006). https://doi.org/10.1007/11818175_27
King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-published paper, August 19(1) (2012)
Lamport, L., Shostak, R., Pease, M.: Concurrency: The Works of Leslie Lamport. Association for Computing Machinery, New York, NY, USA (2019), edited by Dahlia Malkhi
Momose, A., Ren, L.: Optimal communication complexity of authenticated byzantine agreement. In: Gilbert, S. (ed.) 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 209, pp. 32:1–32:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.DISC.2021.32
Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous binary byzantine consensus with \(t < n/3\), \(\cal{O}(n^2)\) messages, and \(\cal{O}(1)\) expected time. J. ACM 62(4) (2015). https://doi.org/10.1145/2785953
Mostéfaoui, A., Raynal, M.: Signature-free broadcast-based intrusion tolerance: Never decide a byzantine value. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) Principles of Distributed Systems, pp. 143–158. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010)
Mostéfaoui, A., Raynal, M.: Signature-free asynchronous byzantine systems: From multivalued to binary consensus with \(t < n/3\), \(\cal{O} (n^2)\) messages, and constant time. Acta Inf. 54(5), 501–520 (2017). https://doi.org/10.1007/s00236-016-0269-y
Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized business review (2008)
Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols for byzantine broadcast and agreement. In: Attiya, H. (ed.) 34th International Symposium on Distributed Computing (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 179, pp. 28:1–28:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.DISC.2020.28
Patra, A., Rangan, C.P.: Communication optimal multi-valued asynchronous byzantine agreement with optimal resilience. In: Fehr, S. (ed.) ICITS 11: 5th International Conference on Information Theoretic Security. Lecture Notes in Computer Science, vol. 6673, pp. 206–226. Springer, Heidelberg (May 2011). https://doi.org/10.1007/978-3-642-20728-0_19
Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and byzantine agreement for \(t \ge n/3\). IBM Research, Armonk, NY, USA (1996)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Deligios, G., Mizrahi Erbes, M. (2024). Closing the Efficiency Gap Between Synchronous and Network-Agnostic Consensus. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14655. Springer, Cham. https://doi.org/10.1007/978-3-031-58740-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-58740-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58739-9
Online ISBN: 978-3-031-58740-5
eBook Packages: Computer ScienceComputer Science (R0)