Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Clique Counts for Network Similarity

  • Conference paper
  • First Online:
Modelling and Mining Networks (WAW 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14671))

Included in the following conference series:

Abstract

Counts of small subgraphs, or graphlet counts, are widely applicable to measure graph similarity. Computing graphlet counts can be computationally expensive and may pose obstacles in network analysis. We study the role of cliques in graphlet counts as a method for graph similarity in social networks. Higher-order clustering coefficients and the Pivoter algorithm for exact clique counts are employed.

Research supported by a grant of the first author from NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashford, J.R., Turner, L.D., Whitaker, R.M., Preece, A., Felmlee, D.: Understanding the characteristics of COVID-19 misinformation communities through graphlet analysis. Online Soc. Networks Media 27, 100178 (2022)

    Article  Google Scholar 

  2. D’Angelo, D.R., Bonato, A., Elenberg, E.R., Gleich, D.F., Hou, Y.: Mining and modeling character networks. In: Proceedings of Algorithms and Models for the Web Graph (2016)

    Google Scholar 

  3. Bonato, A.: A Course on the Web Graph. American Mathematical Society, Providence, Rhode Island (2008)

    Book  Google Scholar 

  4. Bonato, A., Cushman, R., Marbach, T., Zhang, Z.: An evolving network model from clique extension. In: Proceedings of the 28th International Computing and Combinatorics Conference (2022)

    Google Scholar 

  5. Bonato, A., Eikmeier, N., Gleich, D.F., Malik, R.: Centrality in dynamic competition networks. In: Proceedings of Complex Networks (2019)

    Google Scholar 

  6. Bonato, A., et al.: Dimensionality matching of social networks using motifs and eigenvalues. PLoS ONE 9(9), e106052 (2014)

    Article  Google Scholar 

  7. Borgwardt, K., Ghisu, E., Llinares-López, F., O’Bray, L., Rieck, B.: Graph kernels: state-of-the-art and future challenges. Found. Trends Mach. Learn. 13, 531–712 (2020)

    Article  Google Scholar 

  8. Feng, B., et al.: Motif importance measurement based on multi-attribute decision. J. Complex Networks 10, cnac023 (2022)

    Article  MathSciNet  Google Scholar 

  9. Fox, J., Roughgarden, T., Seshadhri, C., Wei, F., Wein, N.: Finding cliques in social networks: a new distribution-free model. SIAM J. Comput. 49, 448–464 (2020)

    Article  MathSciNet  Google Scholar 

  10. Jain, S., Seshadhri, C.: The power of pivoting for exact clique counting. In: Proceedings of the 13th International Conference on Web Search and Data Mining (2020)

    Google Scholar 

  11. Janssen, J., Hurshman, M., Kalyaniwalla, N.: Model selection for social networks using graphlets. Internet Math. 8, 338–363 (2012)

    Article  MathSciNet  Google Scholar 

  12. Lawford, S., Mehmeti, Y.: Cliques and a new measure of clustering: with application to US domestic airlines. Phys. A 560, 125158 (2020)

    Article  MathSciNet  Google Scholar 

  13. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (2005)

    Google Scholar 

  14. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection (2014). http://snap.stanford.edu/data

  15. Milo, R., Shen-Orr, R.S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  16. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.: TUDataset: a collection of benchmark datasets for learning with graphs. In: Proceedings of ICML 2020 Workshop on Graph Representation Learning and Beyond (2020)

    Google Scholar 

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  18. Pi, H., Burghardt, K., Percus, A.G., Lerman, K.: Clique densification in networks. Phys. Rev. E 107, L042301 (2023)

    Article  Google Scholar 

  19. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23, e177–e183 (2007)

    Article  Google Scholar 

  20. Ribeiro, P., Paredes, P., Silva, M., Aparicio, D., Silva, F.: A survey on subgraph counting: concepts, algorithms, and applications to network motifs and graphlets. ACM Comput. Surv. 54, 1–36 (2021)

    Google Scholar 

  21. Rozemberczki, B., Kiss, O., Sarkar, R.: Karate Club: an API oriented open-source Python framework for unsupervised learning on graphs. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (2020)

    Google Scholar 

  22. Shervashidze, N., Vishwanathan, S.V.N., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, pp. 488–495 (2009)

    Google Scholar 

  23. Sinha, S., Bhattacharya, S., Roy, S.: Impact of second-order network motif on online social networks. J. Supercomput. 78, 5450–5478 (2022)

    Article  Google Scholar 

  24. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  25. West, D.B.: Introduction to Graph Theory, 2nd edition. Prentice Hall (2001)

    Google Scholar 

  26. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2015)

    Google Scholar 

  27. Yin, H., Benson, A.R., Leskovec, J.: Higher-order clustering in networks. Phys. Rev. E 97, 052306 (2018)

    Article  Google Scholar 

  28. Zhao, H., Shao, C., Shi, Z., He, S., Gong, Z.: The intrinsic similarity of topological structure in biological neural networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 20, 3292–3305 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Bonato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonato, A., Zhang, Z. (2024). Clique Counts for Network Similarity. In: Dewar, M., et al. Modelling and Mining Networks. WAW 2024. Lecture Notes in Computer Science, vol 14671. Springer, Cham. https://doi.org/10.1007/978-3-031-59205-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59205-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59204-1

  • Online ISBN: 978-3-031-59205-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics