Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

HeartView: An Extensible, Open-Source, Web-Based Signal Quality Assessment Pipeline for Ambulatory Cardiovascular Data

  • Conference paper
  • First Online:
Pervasive Computing Technologies for Healthcare (PH 2023)

Abstract

Wearable sensing systems enable peripheral physiological data to be collected repeatedly in naturalistic settings. However, the ambulatory nature of wearable biosensors predisposes them to common signal artifacts that researchers must address before analysis. Signal quality assessment procedures are time-consuming and non-standardized across research teams, and transparent reporting of custom, closed-source pipelines needs improvement. This paper presents HeartView, an extensible, open-source, web-based signal quality assessment pipeline that visualizes and quantifies missing beats and invalid segments in heart rate variability (HRV) data obtained from ambulatory electrocardiograph (ECG) and photoplethysmograph (PPG) signals. We demonstrate the utility of our pipeline on two datasets: (1) 34 ECGs recorded with the Actiwave Cardio from children with and without autism, and (2) 15 sets of ECGs and PPGs recorded with the RespiBAN and Empatica E4, respectively, from healthy adults in the publicly available WESAD dataset. Our pipeline demonstrates interpretable group differences in physiological signal quality. ECGs of children with autism contain more missing beats and invalid segments than those without autism. Similarly, PPG data contains more missing beats and invalid segments than ECG data. HeartView has a graphical user interface in the form of a web-based dashboard at https://github.com/cbslneu/heartview.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The survey sample comprised 31% researchers and 69% engineers from the Society of Psychophysiological Research (SPR), the IEEE International Machine Learning for Signal Processing (MLSP) workshop, and snowball sampling using personal contacts and social media.

  2. 2.

    As our primary intent is to introduce a tool for researchers to perform initial assessment checks in their SQA, HeartView currently includes only one of several possible algorithms for ECG beat detection [36,37,38,39]. Future users could select and implement additional or alternative state-of-the-art algorithms.

References

  1. Goodwin, M.S.: Passive telemetric monitoring: novel methods for real-world behavioral assessment. In: Handbook of Research Methods for Studying Daily Life. pp. 251–266. Guilford Press, New York (2012)

    Google Scholar 

  2. Mishra, V., et al.: Continuous detection of physiological stress with commodity hardware. ACM Trans. Comput. Healthcare 1, 1–30 (2020)

    Article  Google Scholar 

  3. Weenk, M., et al.: Continuous monitoring of vital signs using wearable devices on the general ward: Pilot study. JMIR Mhealth Uhealth 5, 1–12 (2017)

    Article  Google Scholar 

  4. Pantelopoulos, A., Bourbakis, N.G.: A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40, 1–12 (2010)

    Google Scholar 

  5. Orphanidou, C.: Signal Quality Assessment in Physiological Monitoring: State of the Art and Practical Considerations. Springer, Cham (2018)

    Book  Google Scholar 

  6. Fine, J., et al.: Sources of inaccuracy in photoplethysmography for continuous cardiovascular monitoring. Biosensors 11, 1–36 (2021)

    Article  Google Scholar 

  7. Madhavan, G.: Plethysmography. Biomed. Instrum. Technol. 39, 367–371 (2005)

    Article  Google Scholar 

  8. Kusumoto, F.: ECG Interpretation. Springer Nature, Cham (2020)

    Google Scholar 

  9. Elgendi, M.: Optimal signal quality index for photoplethysmogram signals. Bioengineering (Basel) 3, 21 (2016)

    Article  Google Scholar 

  10. Quintana, D.S., Alvares, G.A., Heathers, J.A.: Guidelines for reporting articles on psychiatry and heart rate variability (GRAPH): recommendations to advance research communication. Transl. Psychiatry 6, 1–10 (2016)

    Article  Google Scholar 

  11. Stupple, A., Singerman, D., Celi, L.A.: The reproducibility crisis in the age of digital medicine. NPJ Digital Med. 2, 3 (2019)

    Google Scholar 

  12. Yamane, N., Mishra, V., Goodwin, M.S.: Developing an open-source web-based data quality assessment pipeline for analysis of ambulatory cardiovascular data in individuals with autism. In: Paper presented at the International Society for Autism Research Annual Meeting (INSAR 2023), Stockholm, Sweden, 3 May 2023 (2023)

    Google Scholar 

  13. Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., Van Laerhoven, K.: Introducing WESAD, a multimodal dataset for wearable stress and affect detection. In: Paper presented at the 20th ACM International Conference on Multimodal Interaction (ICMI 2018), New York, NY, 16 October 2018 (2018)

    Google Scholar 

  14. Quesnel, P.X., Chan, A.D.C., Yang, H.: Real-time biosignal quality analysis of ambulatory ECG for detection of myocardial ischemia. In: 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–5 (2013)

    Google Scholar 

  15. Bae, T.W., Kwon, K.K.: ECG PQRST complex detector and heart rate variability analysis using temporal characteristics of fiducial points. Biomed. Signal Process. Control 66, 1–21 (2021)

    Article  Google Scholar 

  16. Clifford, G., Behar, J., Li, Q., Rezek, I.: Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol. Meas. 33, 1419–1433 (2012)

    Article  Google Scholar 

  17. Daluwatte, C., Johannesen, L., Galeotti, L., Vicente, J., Strauss, D.G., Scully, C.G.: Assessing ECG signal quality indices to discriminate ECGs with artefacts from pathologically different arrhythmic ECGs. Physiol. Meas. 37, 1370–1382 (2016)

    Article  Google Scholar 

  18. Sharma, L.N., Dandapat, S., Mahanta, A.: Kurtosis based multichannel ECG signal denoising and diagnostic distortion measures. In: TENCON 2009 - 2009 IEEE Region 10 Conference. pp. 1–5. IEEE, New York (2009)

    Google Scholar 

  19. Zaunseder, S., Vehkaoja, A., Fleischhauer, V., Hoog Antink, C.: Signal-to-noise ratio is more important than sampling rate in beat-to-beat interval estimation from optical sensors. Biomed. Signal Process. Control 74, 103538 (2022)

    Article  Google Scholar 

  20. Castiglioni, P., Parati, G., Faini, A.: Cepstral analysis for scoring the quality of electrocardiograms for heart rate variability. Front. Physiol. 13, 1–13 (2022)

    Article  Google Scholar 

  21. He, R., et al.: Reducing false arrhythmia alarms in the ICU using novel signal quality indices assessment method. Paper presented at the 2015 Computing in Cardiology Conference, New York, NY, 6 September 2015 (2015)

    Google Scholar 

  22. Orphanidou, C., Bonnici, T., Charlton, P., Clifton, D., Vallance, D., Tarassenko, L.: Signal-quality indices for the electrocardiogram and photoplethysmogram: derivation and applications to wireless monitoring. IEEE J. Biomed. Health Inf. 19, 832–838 (2014)

    Google Scholar 

  23. Behar, J., Oster, J., Li, Q., Clifford, G.D.: A single channel ECG quality metric. In: 2012 Computing in Cardiology, pp. 381–384. IEEE, Kraków (2012)

    Google Scholar 

  24. Kazemi, K., Laitala, J., Azimi, I., Liljeberg, P., Rahmani, A.M.: Robust PPG peak detection using dilated convolutional neural networks. Sensors 22, 1–22 (2022)

    Article  Google Scholar 

  25. Bizzego, A., Battisti, A., Gabrieli, G., Esposito, G., Furlanello, C.: Pyphysio: a physiological signal processing library for data science approaches in physiology. SoftwareX 10, 1–5 (2019)

    Article  Google Scholar 

  26. Carreiras, C., Alves, A.P., Lourenço, A., Canento, F., Silva, H.P. da, Fred, A.: BioSPPy: Biosignal processing in Python (2015). https://biosppy.readthedocs.io/

  27. Kramer, L., Menon, C., Elgendi, M.: ECGAssess: a python-based toolbox to assess ECG lead signal quality. Frontiers in Digital Health. 4, 1–9 (2022)

    Article  Google Scholar 

  28. Makowski, D., et al.: NeuroKit2: a python toolbox for neurophysiological signal processing. Behav. Res. Methods 53, 1689–1696 (2021)

    Article  Google Scholar 

  29. van Gent, P., Farah, H., van Nes, N., van Arem, B.: HeartPy: a novel heart rate algorithm for the analysis of noisy signals. Transport. Res. F: Traffic Psychol. Behav. 66, 368–378 (2019)

    Article  Google Scholar 

  30. Vollmer, M.: HRVTool—an open-source MATLAB toolbox for analyzing heart rate variability. In: 2019 Computing in Cardiology (CinC), pp. 1–4. IEEE, Singapore (2019)

    Google Scholar 

  31. Blechert, J., Peyk, P., Liedlgruber, M., Wilhelm, F.H.: ANSLAB: integrated multichannel peripheral biosignal processing in psychophysiological science. Behav. Res. Methods 48, 1528–1545 (2016)

    Article  Google Scholar 

  32. Plotly: Dash Python user guide. https://dash.plotly.com/

  33. Jenkins, J.L., Valacich, J.S., Williams, P.: Human-computer interaction movement indicators of response biases in online surveys. In: ICIS 2017 Proceedings, pp. 1–16. Association for Information Systems (2017)

    Google Scholar 

  34. Varni, G., et al.: Interactive sonification of synchronisation of motoric behaviour in social active listening to music with mobile devices. J. Multimodal User Interfaces 5, 157–173 (2012)

    Article  Google Scholar 

  35. Manikandan, M.S., Soman, K.P.: A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed. Signal Process. Control 7, 118–128 (2012)

    Article  Google Scholar 

  36. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME 32, 230–236 (1985)

    Article  Google Scholar 

  37. Christov, I.I.: Real time electrocardiogram QRS detection using combined adaptive threshold. Biomed. Eng. Online 3, 28 (2004)

    Article  Google Scholar 

  38. Elgendi, M., Eskofier, B., Dokos, S., Abbott, D.: Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems. PLoS ONE 9, 1–18 (2014)

    Article  Google Scholar 

  39. Qin, Q., Li, J., Yue, Y., Liu, C.: An adaptive and time-efficient ECG R-peak detection algorithm. J Healthc, Eng. 2017, 5980541 (2017)

    Article  Google Scholar 

  40. Feldman, M.: Hilbert transforms. In: Braun, S., Ewins, D., Rao, S.S. (eds.) Encyclopedia of Vibration, pp. 642–648. Elsevier Ltd., Amsterdam (2001)

    Google Scholar 

  41. Sunami, N.: Shannon energy R peak detection (2020). https://github.com/nsunami/Shannon-Energy-R-Peak-Detection

  42. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, E215–E220 (2000)

    Article  Google Scholar 

  43. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20, 45–50 (2001)

    Article  Google Scholar 

  44. Chen, L., Reisner, A.T., Reifman, J.: Automated beat onset and peak detection algorithm for field-collected photoplethysmograms. In: Paper presented at the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, 3 Sept 2009 (2009)

    Google Scholar 

  45. Shin, H.S., Lee, C., Lee, M.: Adaptive threshold method for the peak detection of photoplethysmographic waveform. Comput. Biol. Med. 39, 1145–1152 (2009)

    Article  Google Scholar 

  46. Kuntamalla, S., Reddy, L.R.G.: An efficient and automatic systolic peak detection algorithm for photoplethysmographic signals. Int. J. Comput. Appl. 97, 1–6 (2014)

    Google Scholar 

  47. Mishra, V., et al.: Evaluating the reproducibility of physiological stress detection models. Proc. ACM Interact. Mobile Wearable Ubiq. Technol. 4, 1–29 (2020)

    Article  Google Scholar 

  48. Graham, F.K.: Constraints on measuring heart rate and period sequentially through real and cardiac time. Psychophysiology 15, 492–495 (1978)

    Article  Google Scholar 

  49. Tanaka, H., Monahan, K.D., Seals, D.R.: Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 37, 153–156 (2001)

    Article  Google Scholar 

  50. Palumbo, R.V., Marraccini, M.E., Weyandt, L.L., Wilder-Smith, O., Liu, S., Goodwin, M.S.: Interpersonal autonomic physiology: a systematic review of the literature. Pers. Soc. Psychol. Rev. 21, 99–141 (2016)

    Article  Google Scholar 

  51. Kristiansen, J., et al.: Comparison of two systems for long-term heart rate variability monitoring in free-living conditions: a pilot study. Biomed. Eng. 10, 1–14 (2011)

    Google Scholar 

  52. Goldman, S., Wang, C., Salgado, M.W., Greene, P.E., Kim, M., Rapin, I.: Motor stereotypies in children with autism and other developmental disorders. Dev. Med. Child Neurol. 51, 30–38 (2009)

    Article  Google Scholar 

  53. Rice, C.E., et al.: Reported wandering behavior among children with autism spectrum disorder and/or intellectual disability. J. Pediatr. 174, 232-239.e2 (2016)

    Article  Google Scholar 

  54. Sinzig, J., Walter, D., Doepfner, M.: Attention deficit/hyperactivity disorder in children and adolescents with autism spectrum disorder: symptom or syndrome? J. Atten. Disord. 13, 117–126 (2009)

    Article  Google Scholar 

  55. Kylliäinen, A., Jones, E.J.H., Gomot, M., Warreyn, P., Falck-Ytter, T.: Practical guidelines for studying young children with autism spectrum disorder in psychophysiological experiments. Rev. J. Autism Dev. Disord. 1, 373–386 (2014)

    Article  Google Scholar 

  56. McCarthy, C., Pradhan, N., Redpath, C., Adler, A.: Validation of the empatica E4 wristband. In: 2016 IEEE EMBS International Student Conference (ISC), pp. 1–4 (2016)

    Google Scholar 

  57. Charlton, P.H., et al.: Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants. Physiol. Meas. 38, 669 (2017)

    Article  Google Scholar 

  58. Bonnici, T., Orphanidou, C., Vallance, D., Darrell, A., Tarassenko, L.: Testing of werable monitors in a real-world hospital environment: what lessons can be learnt? In: 2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks, pp. 79–84 (2012)

    Google Scholar 

  59. Joshi, M., et al.: Perceptions on the use of wearable sensors and continuous monitoring in surgical patients: interview study among surgical staff. JMIR Form. Res. 6, e27866 (2022)

    Article  Google Scholar 

  60. Areia, C., et al.: Experiences of current vital signs monitoring practices and views of wearable monitoring: a qualitative study in patients and nurses. J. Adv. Nurs. 78, 810–822 (2022)

    Article  Google Scholar 

  61. Zhang, Q., Zhou, D., Zeng, X.: Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Biomed. Eng. Online 16, 23 (2017)

    Article  Google Scholar 

  62. Nelson, B.W., Low, C.A., Jacobson, N., Areán, P., Torous, J., Allen, N.B.: Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research. npj Dig. Med. 3, 1–9 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha Yamane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamane, N., Mishra, V., Goodwin, M.S. (2024). HeartView: An Extensible, Open-Source, Web-Based Signal Quality Assessment Pipeline for Ambulatory Cardiovascular Data. In: Salvi, D., Van Gorp, P., Shah, S.A. (eds) Pervasive Computing Technologies for Healthcare. PH 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 572. Springer, Cham. https://doi.org/10.1007/978-3-031-59717-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59717-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59716-9

  • Online ISBN: 978-3-031-59717-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics