Abstract
We study fundamental block-structured integer programs called tree-fold and multi-stage IPs. Tree-fold IPs admit a constraint matrix with independent blocks linked together by few constraints in a recursive pattern; and transposing their constraint matrix yields multi-stage IPs. The state-of-the-art algorithms to solve these IPs have an exponential gap in their running times, making it natural to ask whether this gap is inherent. We answer this question affirmative. Assuming the Exponential Time Hypothesis, we prove lower bounds showing that the exponential difference is necessary, and that the known algorithms are near optimal. Moreover, we prove unconditional lower bounds on the norms of the Graver basis, a fundamental building block of all known algorithms to solve these IPs. This shows that none of the current approaches can be improved beyond this bound.
C. Hunkenschröder acknowledges funding by Einstein Foundation Berlin. K.-M. Klein was supported by DFG project KL 3408/1-1. A. Lassota was partially supported by the Swiss National Science Foundation (SNSF) within the project Complexity of Integer Programming (207365). M. Koutecký was partially supported by the Charles University project UNCE 24/SCI/008 and by the project 22-22997S of GA ČR. A. Levin is partially supported by ISF – Israel Science Foundation grant number 1467/22.
A full version of this paper can be found in [14].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albareda-Sambola, M., van der Vlerk, M.H., Fernández, E.: Exact solutions to a class of stochastic generalized assignment problems. Eur. J. Oper. Res. 173(2), 465–487 (2006)
Aschenbrenner, M., Hemmecke, R.: Finiteness theorems in stochastic integer programming. Found. Comput. Math. 7(2), 183–227 (2007)
Chen, L., Marx, D., Ye, D., Zhang, G.: Parameterized and approximation results for scheduling with a low rank processing time matrix. In: STACS. LIPIcs, vol. 66, pp. 22:1–22:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)
Cslovjecsek, J., Eisenbrand, F., Hunkenschröder, C., Rohwedder, L., Weismantel, R.: Block-structured integer and linear programming in strongly polynomial and near linear time. In: SODA, pp. 1666–1681. SIAM (2021)
Cslovjecsek, J., Eisenbrand, F., Pilipczuk, M., Venzin, M., Weismantel, R.: Efficient sequential and parallel algorithms for multistage stochastic integer programming using proximity. In: ESA. LIPIcs, vol. 204, pp. 33:1–33:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
Cslovjecsek, J., Koutecký, M., Lassota, A., Pilipczuk, M., Polak, A.: Parameterized algorithms for block-structured integer programs with large entries. In: SODA 2024 (2024). https://arxiv.org/abs/2311.01890
Dempster, M.A.H., Fisher, M.L., Jansen, L., Lageweg, B.J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Analysis of heuristics for stochastic programming: results for hierarchical scheduling problems. Math. Oper. Res. 8(4), 525–537 (1983)
Eisenbrand, F., Hunkenschröder, C., Klein, K.-M.: Faster algorithms for integer programs with block structure. In: ICALP. LIPIcs, vol. 107, pp. 49:1–49:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)
Eisenbrand, F., Hunkenschröder, C., Klein, K.-M., Kouteckỳ, M., Levin, A., Onn, S.: An algorithmic theory of integer programming. arXiv preprint arXiv:1904.01361 (2019)
Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorithms (TALG) 16(1), 1–14 (2019)
Gavenciak, T., Koutecký, M., Knop, D.: Integer programming in parameterized complexity: five miniatures. Discrete Optim. 44(Part), 100596 (2022)
Hemmecke, R., Onn, S., Romanchuk, L.: \(n\)-fold integer programming in cubic time. Math. Program. 137(1), 325–341 (2013)
Hemmecke, R., Onn, S., Weismantel, R.: \(n\)-fold integer programming and nonlinear multi-transshipment. Optim. Lett. 5(1), 13–25 (2011)
Hunkenschröder, C., Klein, K.-M., Koutecký, M., Lassota, A., Levin, A.: Tight lower bounds for block-structured integer programs (2024). https://arxiv.org/abs/2402.17290
Jansen, K., Klein, K.-M., Lassota, A.: The double exponential runtime is tight for 2-stage stochastic ILPs. In: Singh, M., Williamson, D.P. (eds.) IPCO 2021. LNCS, vol. 12707, pp. 297–310. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73879-2_21
Jansen, K., Klein, K.-M., Maack, M., Rau, M.: Empowering the configuration-IP - new PTAS results for scheduling with setups times. In: ITCS. LIPIcs, vol. 124, pp. 44:1–44:19. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019)
Jansen, K., Lassota, A., Maack, M., Pikies, T.: Total completion time minimization for scheduling with incompatibility cliques. In: ICAPS, pp. 192–200. AAAI Press (2021)
Jansen, K., Lassota, A., Rohwedder, L.: Near-linear time algorithm for \(n\)-fold ILPs via color coding. SIAM J. Discrete Math. 34(4), 2282–2299 (2020)
Kall, P., Wallace, S.W.: Stochastic Programming. Springer, Heidelberg (1994)
Klein, K.-M.: About the complexity of two-stage stochastic IPs. Math. Program. 192(1), 319–337 (2022)
Klein, K.-M., Reuter, J.: Collapsing the tower - on the complexity of multistage stochastic IPs (2022)
Knop, D., Koutecký, M.: Scheduling meets \(n\)-fold integer programming. J. Sched. 21(5), 493–503 (2018)
Knop, D., Koutecký, M.: Scheduling kernels via configuration LP. In: ESA. LIPIcs, vol. 244, pp. 73:1–73:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
Knop, D., Koutecký, M., Levin, A., Mnich, M., Onn, S.: Parameterized complexity of configuration integer programs. Oper. Res. Lett. 49(6), 908–913 (2021)
Knop, D., Koutecký, M., Mnich, M.: Combinatorial \(n\)-fold integer programming and applications. Math. Program. 184(1), 1–34 (2020)
Knop, D., Koutecký, M., Mnich, M.: Voting and bribing in single-exponential time. ACM Trans. Econ. Comput. 8(3), 12:1–12:28 (2020)
Knop, D., Pilipczuk, M., Wrochna, M.: Tight complexity lower bounds for integer linear programming with few constraints. ACM Trans. Comput. Theory 12(3), 1–19 (2020). https://doi.org/10.1145/3397484
Koutecký, M., Levin, A., Onn, S.: A parameterized strongly polynomial algorithm for block structured integer programs. In: 45th International Colloquium on Automata, Languages, and Programming. Leibniz International Proceedings in Informatics (LIPIcs), Germany, vol. 107, pp. 85:1–85:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2018)
Laporte, G., Louveaux, F.V., Mercure, H.: A priori optimization of the probabilistic traveling salesman problem. Oper. Res. 42(3), 543–549 (1994)
De Loera, J.A., Hemmecke, R., Onn, S., Weismantel, R.: N-fold integer programming. Discrete Optim. 5(2), 231–241 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hunkenschröder, C., Klein, KM., Koutecký, M., Lassota, A., Levin, A. (2024). Tight Lower Bounds for Block-Structured Integer Programs. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-59835-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59834-0
Online ISBN: 978-3-031-59835-7
eBook Packages: Computer ScienceComputer Science (R0)