Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fast Combinatorial Algorithms for Efficient Sortation

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14679))

  • 350 Accesses

Abstract

Modern parcel logistic networks are designed to ship demand between given origin, destination pairs of nodes in an underlying directed network. Efficiency dictates that volume needs to be consolidated at intermediate nodes in a typical hub-and-spoke fashion. In practice, such consolidation requires parcel sortation. In this work, we propose a mathematical model for the physical requirements, and limitations of parcel sortation. We then show that it is NP-hard to determine whether a feasible sortation plan exists. We discuss several settings, where (near-) feasibility of a given sortation instance can be determined efficiently. The algorithms we propose are fast and build on combinatorial witness set type lower bounds that are reminiscent and extend those used in earlier work on degree-bounded spanning trees and arborescences.

M. Van Dyk and J. Koenemann—This work was partially supported by the NSERC Discovery Grant Program, grant number RGPIN-03956-2017 and by an Amazon Post-Internship Fellowship. The work presented here does not relate to the authors’ positions at Amazon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree-bounded directed network design. SIAM J. Comput. 39(4), 1413–1431 (2009)

    Article  MathSciNet  Google Scholar 

  2. Chakrabarty, D., Lee, Y. T., Sidford, A., Singla, S., Wong, S.C.: Faster matroid intersection. In: FOCS, pp. 1146–1168. IEEE Computer Society (2019)

    Google Scholar 

  3. Chaudhuri, K., Rao, S., Riesenfeld, S.J., Talwar, K.: A push-relabel algorithm for approximating degree bounded MSTs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 191–201. Springer, Heidelberg (2006). https://doi.org/10.1007/11786986_18

    Chapter  Google Scholar 

  4. Chaudhuri, K., Rao, S., Riesenfeld, S.J., Talwar, K.: What would Edmonds do? Augmenting paths and witnesses for degree-bounded MSTs. Algorithmica 55(1), 157–189 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chvátal, V.: Tough graphs and Hamiltonian circuits. Discrete Math. 5, 215–228 (1973)

    Article  MathSciNet  Google Scholar 

  6. Dehghani, S., Ehsani, S., Hajiaghayi, M., Liaghat, V.: Online degree-bounded steiner network design. In: SODA, pp. 164–175. SIAM (2016)

    Google Scholar 

  7. Fürer, M., Raghavachari, B.: Approximating the minimum-degree steiner tree to within one of optimal. J. Algorithms 17, 409–423 (1994)

    Article  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman & Co, New York (1990)

    Google Scholar 

  9. Goemans, M.X.: Minimum bounded degree spanning trees. In: FOCS, pp. 273–282. IEEE Computer Society (2006)

    Google Scholar 

  10. Guo, X., Kortsarz, G., Laekhanukit, B., Li, S., Vaz, D., Xian, J.: On approximating degree-bounded network design problems. Algorithmica 84(5), 1252–1278 (2022)

    Article  MathSciNet  Google Scholar 

  11. Koenemann, J., Ravi, R.: A matter of degree: improved approximation algorithms for degree-bounded minimum spanning trees. SIAM J. Comput. 31(6), 1783–1793 (2002)

    Article  MathSciNet  Google Scholar 

  12. Koenemann, J., Ravi, R.: Primal-dual meets local search: approximating MSTs with nonuniform degree bounds. SIAM J. Comput. 34, 763–773 (2005)

    Article  MathSciNet  Google Scholar 

  13. Könemann, J., Ravi, R.: Quasi-polynomial time approximation algorithm for low-degree minimum-cost steiner trees. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 289–301. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24597-1_25

    Chapter  Google Scholar 

  14. Kortsarz, G., Nutov, Z.: Bounded degree group steiner tree problems. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds.) IWOCA 2020. LNCS, vol. 12126, pp. 343–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48966-3_26

    Chapter  Google Scholar 

  15. Lara, C.L., Koenemann, J., Nie, Y., de Souza, C.C.: Scalable timing-aware network design via Lagrangian decomposition. Eur. J. Oper. Res. 309(1), 152–169 (2023)

    Article  MathSciNet  Google Scholar 

  16. Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with degree or order constraints. SIAM J. Comput. 39(3), 1062–1087 (2009)

    Article  MathSciNet  Google Scholar 

  17. Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable network design. SIAM J. Comput. 42(6), 2217–2242 (2013)

    Article  MathSciNet  Google Scholar 

  18. Nutov, Z.: Approximating directed weighted-degree constrained networks. Theoret. Comput. Sci. 412(8), 901–912 (2011)

    Article  MathSciNet  Google Scholar 

  19. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., and Hunt III, H.B.: Many birds with one stone: multi-objective approximation algorithms. In: STOC, pp. 438–447. ACM (1993)

    Google Scholar 

  20. Ravi, R., Singh, M.: Delegate and conquer: An LP-based approximation algorithm for minimum degree MSTs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11786986_16

    Chapter  Google Scholar 

  21. Schrijver, A.: Combinatorial Optimization-Polyhedra and Efficiency. Springer, Heidelberg (2003)

    Google Scholar 

  22. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of optimal. In: STOC, p]. 661–670. ACM (2007)

    Google Scholar 

  23. Van Belle, J., Valckenaers, P., Cattrysse, D.: Cross-docking: State of the art. Omega, 40(6), 827–846 (2012). Special Issue on Forecasting in Management Science

    Google Scholar 

  24. Van Dyk, M., Klause, K., Könemann, J., Megow, N.: Fast combinatorial algorithms for efficient sortation. CoRR, abs/2311.05094 (2023)

    Google Scholar 

  25. Win, S.: On a connection between the existence of k-trees and the toughness of a graph. Graphs Comb. 5, 201–205 (1989)

    Article  MathSciNet  Google Scholar 

  26. Yao, G., Zhu, D., Li, H., Ma, S.: A polynomial algorithm to compute the minimum degree spanning trees of directed acyclic graphs with applications to the broadcast problem. Discret. Math. 308(17), 3951–3959 (2008)

    Article  MathSciNet  Google Scholar 

  27. Zheng, K.: Sort optimization and allocation planning in amazon middle mile network. Informs (2021)

    Google Scholar 

Download references

Acknowledgements

We thank Sharat Ibrahimpur and Kostya Pashkovich for valuable discussions on lower bounds and the link to matroid intersection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madison Van Dyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van Dyk, M., Klause, K., Koenemann, J., Megow, N. (2024). Fast Combinatorial Algorithms for Efficient Sortation. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59835-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59834-0

  • Online ISBN: 978-3-031-59835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics