Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Profiting from High Frequency Market Psychology Data with Deep Learning

  • Conference paper
  • First Online:
Digital Transformation in the Viral Age (WeB 2022)

Abstract

It is challenging to predict financial markets, but there have been continued efforts to develop improved prediction methods. With availability of high frequency market psychology data, and guided by design science principles, this research iteratively develops and comprehensively evaluates DeepPsych, a deep learning system that leverages market psychology data to gain prediction advantage. Using two convolutional sequence-to-sequence channels to extract local and temporal features from psychology and trading data separately, the system outperforms other leading machine learning and deep learning models in both machine learning metrics and economic values realized through trading strategy based on the prediction. This research contributes to both information systems design science through innovation in deep learning and finance by providing empirical evidence about the predictive power of high frequency market psychology data. The research also benefits practice by producing a validated Fintech artifact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akansu, A., Cicon, J., Ferris, S.P., Sun, Y.: Firm performance in the face of fear: how CEO moods affect firm performance. J. Behav. Financ. 18(4), 373–389 (2017)

    Article  Google Scholar 

  2. Deng, S., Huang, Z., Sinha, A.P., Zhao, H.: The interaction between microblog sentiment and stock returns: an empirical examination. MISQ 42(3), 895–918 (2018)

    Article  Google Scholar 

  3. Griffith, J., Najand, M., Shen, J.: Emotions in the stock market. J. Behav. Financ. 21(1), 42–56 (2020)

    Google Scholar 

  4. Gu, S., Kelly, B., Xiu, D.: Empirical asset pricing via machine learning. Rev. Financ. Stud. 33(5), 2223–2273 (2020)

    Article  Google Scholar 

  5. Gu, S., Kelly, B., Xiu, D.: Autoencoder asset pricing models. J. Econometrics 222(1), 429–450 (2021)

    Article  MathSciNet  Google Scholar 

  6. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MISQ 28(1), 75–201 (2004)

    Article  Google Scholar 

  7. Hirshleifer, D.: Investor psychology and asset pricing. J. Financ. 56(4), 1533–1597 (2001)

    Article  Google Scholar 

  8. Hirshleifer, D., Shumway, T.: Good day sunshine: stock returns and the weather. J. Financ. 58(3), 1009–1032 (2003)

    Article  Google Scholar 

  9. Klingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Second International Conference on Learning Representations, April 14–16. Banff, Canada (2014)

    Google Scholar 

  10. Kuhnen, C.M., Knutson, B.: The influence of affect on beliefs, preferences, and financial decisions. J. Financ. Quant. Anal. 46(3), 605–626 (2011)

    Article  Google Scholar 

  11. Lo, A., Mamaysky, H., Wang, J.: Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation. J. Financ. 55(4), 1705–1765 (2000)

    Article  Google Scholar 

  12. Lo, A.W., Repin, D.V., Steenbarger, B.N.: Fear and greed in financial markets: a clinical study of day-traders. Am. Econ. Rev. 95(2), 352–359 (2005)

    Article  Google Scholar 

  13. Mayew, W.J., Venkatachalam, M.: The power of voice: managerial affective states and future firm performance. J. Financ. 67(1), 1–43 (2012)

    Article  Google Scholar 

  14. Padmanabhan, P., Fang, X., Sahoo, N., Burton-Jones, A.: Machine learning in information systems research. MISQ 46(1), iii–xix (2022)

    Google Scholar 

  15. Peterson, R. L.: Trading on Sentiment: The Power of Minds Over Markets. Wiley (2016)

    Google Scholar 

  16. Price, S.M.K., Seiler, M.J., Shen, J.: Do investors infer vocal cues from CEOs during quarterly REIT conference calls? J. Real Estate Financ. Econ. 54(4), 515–557 (2017)

    Article  Google Scholar 

  17. Shen, J., Griffith, J., Najand, M., Sun, L.: Predicting Stock and Bond Market Returns with Emotions: Evidence from Futures Markets. J. Behav. Financ. 24(3), 333–344 (2023)

    Google Scholar 

  18. Shen, J., Najand, M., Dong, F., Wu, H.: News and social media emotions in the commodity market. Rev. Behav. Financ. 9(2), 148–168 (2017)

    Article  Google Scholar 

  19. Sun, T., Wang, J., Zhang, P., Cao, Y., Liu, B., Wang, D.: Predicting stock price returns using microblog sentiment for Chinese stock market. In: Third International Conference on Big Data Computing and Communications (BIGCOM), pp. 87–96 (2017)

    Google Scholar 

  20. Yang, Y., Qin, Y., Fang, Y., Zhang, Z.: Unlocking the power of voice for financial risk prediction: a theory-driven deep learning design science approach. MISQ 47(1), 63–96 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, J., Wang, J., Zhu, H., Cao, Y., Liu, B. (2024). Profiting from High Frequency Market Psychology Data with Deep Learning. In: Kathuria, A., Karhade, P.P., Zhao, K., Chaturvedi, D. (eds) Digital Transformation in the Viral Age. WeB 2022. Lecture Notes in Business Information Processing, vol 508. Springer, Cham. https://doi.org/10.1007/978-3-031-60003-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60003-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60002-9

  • Online ISBN: 978-3-031-60003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics