Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Multi-objective Particle Swarm Optimization Framework for Operations Management

  • Conference paper
  • First Online:
E-Business. New Challenges and Opportunities for Digital-Enabled Intelligent Future (WHICEB 2024)

Abstract

There is ongoing research on the problem of how to best combine predictive modeling and optimization. This is especially important in operations management, where there are complex business processes to be optimized. We propose a framework based on evolutionary computing with multi-objective particle swarm optimization and on the design of the fitness function according to the business operations to be optimized. By doing so, one can optimize a range of interesting problems using neural networks that would be otherwise hard to handle with classically supervised learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vanderschueren, T., Verdonck, T., Baesens, B., Verbeke, W.: Predict-then-optimize or predict-and-optimize? An empirical evaluation of cost-sensitive learning strategies. Inf. Sci. 594, 400–415 (2022)

    Article  Google Scholar 

  2. Kraus, M., Feuerriegel, S., Oztekin, A.: Deep learning in business analytics and operations research: models, applications and managerial implications. Eur. J. Oper. Res. 281(3), 628–641 (2020)

    Article  Google Scholar 

  3. Elmachtoub, A.N., Grigas, P.: Smart “predict, then optimize.” Manag. Sci. 68, 9–26 (2022)

    Article  Google Scholar 

  4. Sengewald, J., Lackes, R.: Prescriptive analytics in procurement: reducing process costs. In: Wirtschaftsinformatik 2022 Proceedings (2022)

    Google Scholar 

  5. Allal-Chérif, O., Simón-Moya, V., Ballester, A.C.C.: Intelligent purchasing: how artificial intelligence can redefine the purchasing function. J. Bus. Res. 124, 69–76 (2021)

    Article  Google Scholar 

  6. Spreitzenbarth, J.M., Bode, C., Stuckenschmidt, H.: Artificial intelligence and machine learning in purchasing and supply management: a mixed-methods review of the state-of-the-art in literature and practice. J. Purch. Supply Manag., 100896 (2024)

    Google Scholar 

  7. Guida, M., Caniato, F., Moretto, A., Ronchi, S.: The role of artificial intelligence in the procurement process: state of the art and research agenda. J. Purch. Supply Manag. 29, 100823 (2023)

    Article  Google Scholar 

  8. Handfield, R., Jeong, S., Choi, T.: Emerging procurement technology: data analytics and cognitive analytics. IJPDLM 49, 972–1002 (2019)

    Article  Google Scholar 

  9. Bertsimas, D., Kallus, N.: From predictive to prescriptive analytics. Manag. Sci. 66, 1025–1044 (2020)

    Article  Google Scholar 

  10. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2003)

    Article  Google Scholar 

  11. Coello, C.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC 2002 (Cat. No. 02TH8600), pp. 1051–1056. IEEE (2002)

    Google Scholar 

  12. Kruse, R., Mostaghim, S., Borgelt, C., Braune, C., Steinbrecher, M.: Computational swarm intelligence. In: Kruse, R., Mostaghim, S., Borgelt, C., Braune, C., Steinbrecher, M. (eds.) Computational Intelligence. Texts in Computer Science, pp. 343–369. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-42227-1_14

  13. Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS 2003 (Cat. No. 03EX706), pp. 26–33. IEEE (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Sengewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sengewald, J., Lackes, R. (2024). A Multi-objective Particle Swarm Optimization Framework for Operations Management. In: Tu, Y.P., Chi, M. (eds) E-Business. New Challenges and Opportunities for Digital-Enabled Intelligent Future. WHICEB 2024. Lecture Notes in Business Information Processing, vol 517. Springer, Cham. https://doi.org/10.1007/978-3-031-60324-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60324-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60326-6

  • Online ISBN: 978-3-031-60324-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics