Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-agent Online Graph Exploration on Cycles and Tadpole Graphs

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2024)

Abstract

We study the problem of multi-agent online graph exploration, in which a team of k agents has to explore a given graph, starting and ending on the same node. The graph is initially unknown. Whenever a node is visited by an agent, its neighborhood and adjacent edges are revealed. The agents share a global view of the explored parts of the graph. The cost of the exploration has to be minimized, where cost either describes the time needed for the entire exploration (time model), or the length of the longest path traversed by any agent (energy model). We investigate graph exploration on cycles and tadpole graphs for 2–4 agents, providing optimal results on the competitive ratio in the energy model (1-competitive with two agents on cycles and three agents on tadpole graphs), and for tadpole graphs in the time model (1.5-competitive with four agents). We also show competitive upper bounds of 2 for the exploration of tadpole graphs with three agents, and 2.5 for the exploration of tadpole graphs with two agents in the time model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van den Akker, E., Buchin, K., Foerster, K.: Multi-agent online graph exploration on cycles and tadpole graphs. CoRR abs/2402.13845 (2024)

    Google Scholar 

  2. Brandt, S., Foerster, K., Maurer, J., Wattenhofer, R.: Online graph exploration on a restricted graph class: optimal solutions for tadpole graphs. Theor. Comput. Sci. 839, 176–185 (2020)

    Article  MathSciNet  Google Scholar 

  3. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)

    Article  MathSciNet  Google Scholar 

  4. Disser, Y., Mousset, F., Noever, A., Skoric, N., Steger, A.: A general lower bound for collaborative tree exploration. Theor. Comput. Sci. 811, 70–78 (2020)

    Article  MathSciNet  Google Scholar 

  5. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006). https://doi.org/10.1007/11682127_24

    Chapter  Google Scholar 

  6. Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8_5

    Chapter  Google Scholar 

  7. Foerster, K., Wattenhofer, R.: Lower and upper competitive bounds for online directed graph exploration. Theor. Comput. Sci. 655, 15–29 (2016)

    Article  MathSciNet  Google Scholar 

  8. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  Google Scholar 

  9. Fritsch, R.: Online graph exploration on trees, unicyclic graphs and cactus graphs. Inf. Process. Lett. 168, 106096 (2021)

    Article  MathSciNet  Google Scholar 

  10. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.: Online graph exploration algorithms for cycles and trees by multiple searchers. J. Comb. Optim. 28(2), 480–495 (2014)

    Article  MathSciNet  Google Scholar 

  11. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: SPAA 2012, pp. 27–36. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik van den Akker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van den Akker, E., Buchin, K., Foerster, KT. (2024). Multi-agent Online Graph Exploration on Cycles and Tadpole Graphs. In: Emek, Y. (eds) Structural Information and Communication Complexity. SIROCCO 2024. Lecture Notes in Computer Science, vol 14662. Springer, Cham. https://doi.org/10.1007/978-3-031-60603-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60603-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60602-1

  • Online ISBN: 978-3-031-60603-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics