Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

WisCompanion: Integrating the Socratic Method with ChatGPT-Based AI for Enhanced Explainability in Emotional Support for Older Adults

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2024)

Abstract

WisCompanion is a conversational artificial intelligence (AI) platform that merges the Socratic method with ChatGPT’s advanced prompting capabilities to provide tailored emotional support for older adults. This unique combination fosters critical thinking and engagement through iterative questioning, explicitly addressing older adults’ cognitive and emotional needs. This paper outlines a systematic approach for integrating a Socratic, ethical, and sensemaking AI framework with a chatGPT-based conversational AI tailored to older adults and trained on customized user data. WisCompanion delivers precise, context-aware explanations, fostering trust and transparency in AI interactions. Additionally, it supports lifelong learning. Our evaluations show significant improvements in user satisfaction with emotion support. Therefore, our results indicate that applying Socratic questioning techniques in conversational AI creates a dynamic and multi-layered dialogue structure. These techniques work in unison to foster a deeper understanding of the user’s perspectives, emotions, and experiences, thereby significantly enhancing the quality of AI-older adult interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Introducing GPTs—openai.com. https://openai.com/blog/introducing-gpts. Accessed 21 Dec 2023

  2. World Health Organization (WHO)—who.int. https://www.who.int/. Accessed 21 Dec 2023

  3. Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic parrots: can language models be too big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623 (2021)

    Google Scholar 

  4. Braun, J.D., Strunk, D.R., Sasso, K.E., Cooper, A.A.: Therapist use of socratic questioning predicts session-to-session symptom change in cognitive therapy for depression. Behav. Res. Ther. 70, 32–37 (2015)

    Article  Google Scholar 

  5. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  6. Carey, T.A., Mullan, R.J.: What is socratic questioning? Psychotherapy Theory Res. Pract. Train. 41(3), 217 (2004)

    Article  Google Scholar 

  7. Charness, N., Boot, W.R.: Aging and information technology use: potential and barriers. Curr. Dir. Psychol. Sci. 18(5), 253–258 (2009)

    Article  Google Scholar 

  8. Chen, K., Chan, A.H.: A review of technology acceptance by older adults. Gerontechnology (2011)

    Google Scholar 

  9. Colby, K.M.: Ten criticisms of parry. ACM SIGART Bulletin 48, 5–9 (1974)

    Article  Google Scholar 

  10. Czaja, S.J., et al.: Factors predicting the use of technology: findings from the center for research and education on aging and technology enhancement (create). Psychol. Aging 21(2), 333 (2006)

    Article  Google Scholar 

  11. Dalal, D.: Socrates Sim: A Dialog Simulation Framework to Support Task Completion Dialog Research. Ph.D. thesis, Harvard University (2018)

    Google Scholar 

  12. Derner, E., Batistič, K.: Beyond the safeguards: exploring the security risks of ChatGPT. arXiv preprint arXiv:2305.08005 (2023)

  13. Ding, Q., Ding, D., Wang, Y., Guan, C., Ding, B.: Unraveling the landscape of large language models: a systematic review and future perspectives. J. Electron. Bus. Digital Econ. (ahead-of-print) (2023)

    Google Scholar 

  14. Edwards, J., Sanoubari, E.: A need for trust in conversational interface research. In: Proceedings of the 1st International Conference on Conversational User Interfaces, pp. 1–3 (2019)

    Google Scholar 

  15. Ferland, L., et al.: Tell me about your day: designing a conversational agent for time and stress management. In: Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability, pp. 297–303 (2021)

    Google Scholar 

  16. Fryer, L., Carpenter, R.: Bots as language learning tools (2006)

    Google Scholar 

  17. Goar, V., Yadav, N.S., Yadav, P.S.: Conversational AI for natural language processing: an review of ChatGPT. Int. J. Recent Innov. Trends Comput. Commun. 11, 109–117 (2023)

    Article  Google Scholar 

  18. Haupt, C.E., Marks, M.: Ai-generated medical advice-GPT and beyond. Jama 329(16), 1349–1350 (2023)

    Article  Google Scholar 

  19. Hawthorn, D.: Possible implications of aging for interface designers. Interact. Comput. 12(5), 507–528 (2000)

    Article  Google Scholar 

  20. Hill, R., Betts, L.R., Gardner, S.E.: Older adults’ experiences and perceptions of digital technology: (dis) empowerment, wellbeing, and inclusion. Comput. Hum. Behav. 48, 415–423 (2015)

    Article  Google Scholar 

  21. Jensen Jr., R.D.: The effectiveness of the socratic method in developing critical thinking skills in English language learners. Online Submission (2015)

    Google Scholar 

  22. Kaur, H., Adar, E., Gilbert, E., Lampe, C.: Sensible AI: re-imagining interpretability and explainability using sensemaking theory. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 702–714 (2022)

    Google Scholar 

  23. Kazantzis, N., et al.: Socratic dialogue and guided discovery in cognitive behavioral therapy: a modified delphi panel. Int. J. Cogn. Ther. 11, 140–157 (2018)

    Article  Google Scholar 

  24. Kazantzis, N., Fairburn, C.G., Padesky, C.A., Reinecke, M., Teesson, M.: Unresolved issues regarding the research and practice of cognitive behavior therapy: the case of guided discovery using socratic questioning. Behav. Chang. 31(1), 1–17 (2014)

    Article  Google Scholar 

  25. Kinsella, K.G., Phillips, D.R.: Global Aging: The Challenge of Success, vol. 60. Population Reference Bureau, Washington DC (2005)

    Google Scholar 

  26. Kocoń, J., et al.: ChatGPT: jack of all trades, master of none. Inform. Fusion 99, 101861 (2023)

    Article  Google Scholar 

  27. Langer, M., He, Z., Rahayu, W., Xue, Y.: Distributed training of deep learning models: a taxonomic perspective. IEEE Trans. Parallel Distrib. Syst. 31(12), 2802–2818 (2020)

    Article  Google Scholar 

  28. Lara, F.: Why a virtual assistant for moral enhancement when we could have a socrates? Sci. Eng. Ethics 27(4), 42 (2021)

    Article  Google Scholar 

  29. Liu, C.W., Lowe, R., Serban, I.V., Noseworthy, M., Charlin, L., Pineau, J.: How not to evaluate your dialogue system: an empirical study of unsupervised evaluation metrics for dialogue response generation. arXiv preprint arXiv:1603.08023 (2016)

  30. Lorenzen-Huber, L., Boutain, M., Camp, L.J., Shankar, K., Connelly, K.H.: Privacy, technology, and aging: a proposed framework. Ageing Int. 36, 232–252 (2011)

    Article  Google Scholar 

  31. Loria, S., et al.: TextBlob documentation. Release 0.15 2(8), 269 (2018)

    Google Scholar 

  32. Lund, B.D., Wang, T.: Chatting about ChatGPT: how may AI and GPT impact academia and libraries? Library Hi Tech News 40(3), 26–29 (2023)

    Article  Google Scholar 

  33. Meisner, B.A.: A meta-analysis of positive and negative age stereotype priming effects on behavior among older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 67(1), 13–17 (2012)

    Article  Google Scholar 

  34. Meyer, J.G., et al.: ChatGPT and large language models in academia: opportunities and challenges. BioData Min. 16(1), 20 (2023)

    Article  Google Scholar 

  35. Nations, U.: Ageing \(|\) United Nations—un.org. https://www.un.org/en/global-issues/ageing. Accessed 21 Dec 2023

  36. Naveed, H., et al.: A comprehensive overview of large language models. arXiv preprint arXiv:2307.06435 (2023)

  37. Nelson, L.: Socratic method and critical philosophy. Revista Portuguesa de Filosofia 34(2), 312 (1978)

    Google Scholar 

  38. Overholser, J.C.: The socratic method as a technique in psychotherapy supervision. Prof. Psychol. Res. Pract. 22(1), 68 (1991)

    Article  Google Scholar 

  39. Overholser, J.C.: Psychotherapy according to the Socratic method: Integrating ancient philosophy with contemporary cognitive therapy. J. Cogn. Psychother. 24(4), 354–363 (2010)

    Article  Google Scholar 

  40. Owan, R., Ferland, L., Etori, N., Koutstaal, W., Gini, M.: Conversational agents for elderly users. In: Workshop Assistive Robotics for Citizens at IROS (2023)

    Google Scholar 

  41. Padesky, C.A.: Socratic questioning: changing minds or guiding discovery. In: A Keynote Address Delivered at the European Congress of Behavioural and Cognitive Therapies, London, vol. 24 (1993)

    Google Scholar 

  42. Paul, R., Elder, L.: Critical thinking: the nature of critical and creative thought. J. Dev. Educ. 30(2), 34 (2006)

    Google Scholar 

  43. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  44. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

    MathSciNet  Google Scholar 

  45. Rawte, V., Sheth, A., Das, A.: A survey of hallucination in large foundation models. arXiv preprint arXiv:2309.05922 (2023)

  46. Ray, P.P.: ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber-Phys. Syst. 3, 121–154 (2023)

    Article  Google Scholar 

  47. Scherrer, N., Shi, C., Feder, A., Blei, D.M.: Evaluating the moral beliefs encoded in llms. arXiv preprint arXiv:2307.14324 (2023)

  48. Seeskin, K.: Dialogue and Discovery: A Study in Socratic Method. Suny Press, Albany (1987)

    Google Scholar 

  49. Stojković, N., Zerkin, D.G.: Pedagogy of Socratic method of teaching ESP. J. Teach. Engl. Specif. Acad. Purp. 11, 555–565 (2023)

    Google Scholar 

  50. Sylvester, A., Temesgen, E., Etori, N., Gini, M.: Autonomy and dignity for elderly using socially assistive technologies. In: Workshop Assistive Robotics for Citizens at IROS (2023)

    Google Scholar 

  51. Sylvester, A., Temesgen, E., Etori, N., Gini, M.: Ethical robot design considerations for individuals suffering from a neurodegenerative disease. In: Workshop Geriatronics: AI and Robotics for Health & Well-Being in Older Age at IROS (2023)

    Google Scholar 

  52. Tack, A., Piech, C.: The AI teacher test: measuring the pedagogical ability of blender and GPT-3 in educational dialogues. arXiv preprint arXiv:2205.07540 (2022)

  53. Tamang, L.J., Alshaikh, Z., Khayi, N.A., Oli, P., Rus, V.: A comparative study of free self-explanations and socratic tutoring explanations for source code comprehension. In: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, pp. 219–225 (2021)

    Google Scholar 

  54. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  55. Wang, S., et al.: Technology to support aging in place: Older adults’ perspectives. Healthcare 7, 60 (2019)

    Article  Google Scholar 

  56. Webster, J.J., Kit, C.: Tokenization as the initial phase in NLP. In: COLING 1992 Volume 4: The 14th International Conference on Computational Linguistics (1992)

    Google Scholar 

  57. Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural. Inf. Process. Syst. 35, 24824–24837 (2022)

    Google Scholar 

  58. Weick, K.E.: Sensemaking in organizations, vol. 3. Sage, Thousand (1995)

    Google Scholar 

  59. Weizenbaum, J.: Eliza-a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)

    Article  Google Scholar 

  60. Wu, J., Gan, W., Chen, Z., Wan, S., Yu, P.S.: Multimodal large language models: a survey. arXiv preprint arXiv:2311.13165 (2023)

  61. Ziefle, M., Bay, S.: How older adults meet complexity: aging effects on the usability of different mobile phones. Beh. Inform. Technol. 24(5), 375–389 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

We thank colleagues for their inspiring work, and the ‘Pasonas’ initiative participants played critical evaluation roles, enriching our research without using actual data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naome A. Etori .

Editor information

Editors and Affiliations

Ethics declarations

Ethics Statement

The research design and implementation were carefully considered to avoid harm or discomfort to anyone. Interactions with ChatGPT were structured to prevent the propagation of misinformation, bias, or offensive content.

Disclosure of Interests

The authors declare that they have no competing interests relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Etori, N.A., Gini, M. (2024). WisCompanion: Integrating the Socratic Method with ChatGPT-Based AI for Enhanced Explainability in Emotional Support for Older Adults. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2024. Lecture Notes in Computer Science(), vol 14734. Springer, Cham. https://doi.org/10.1007/978-3-031-60606-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60606-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60605-2

  • Online ISBN: 978-3-031-60606-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics