Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

VisionKG: Unleashing the Power of Visual Datasets via Knowledge Graph

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14665))

Included in the following conference series:

  • 287 Accesses

Abstract

The availability of vast amounts of visual data with diverse and fruitful features is a key factor for developing, verifying, and benchmarking advanced computer vision (CV) algorithms and architectures. Most visual datasets are created and curated for specific tasks or with limited data distribution for very specific fields of interest, and there is no unified approach to manage and access them across diverse sources, tasks, and taxonomies. This not only creates unnecessary overheads when building robust visual recognition systems, but also introduces biases into learning systems and limits the capabilities of data-centric AI. To address these problems, we propose the Vision Knowledge Graph (VisionKG), a novel resource that interlinks, organizes and manages visual datasets via knowledge graphs and Semantic Web technologies. It can serve as a unified framework facilitating simple access and querying of state-of-the-art visual datasets, regardless of their heterogeneous formats and taxonomies. One of the key differences between our approach and existing methods is that VisionKG is not only based on metadata but also utilizes a unified data schema and external knowledge bases to integrate, interlink, and align visual datasets. It enhances the enrichment of the semantic descriptions and interpretation at both image and instance levels and offers data retrieval and exploratory services via SPARQL and natural language empowered by Large Language Models (LLMs). VisionKG currently contains 617 million RDF triples that describe approximately 61 million entities, which can be accessed at https://vision.semkg.org and through APIs. With the integration of 37 datasets and four popular computer vision tasks, we demonstrate its usefulness across various scenarios when working with computer vision pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://huggingface.co/docs/datasets/index.

  2. 2.

    https://github.com/opendatalab/opendatalab-python-sdk.

  3. 3.

    https://paperswithcode.com/datasets.

  4. 4.

    https://vision.semkg.org.

  5. 5.

    https://github.com/cqels/vision.

  6. 6.

    https://vision.semkg.org/sparql.

  7. 7.

    List of dataset licenses in VisionKG: http://vision.semkg.org/licences.html.

  8. 8.

    https://creativecommons.org/licenses/by/4.0/.

  9. 9.

    https://github.com/cqels/vision.

  10. 10.

    https://github.com/cqels/vision.

References

  1. Alla, S., Adari, S.K., Alla, S., Adari, S.K.: What is MLOps? Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure, pp. 79–124 (2021)

    Google Scholar 

  2. Bisong, E., Bisong, E.: Kubeflow and kubeflow pipelines. In: Bisong, E. (ed.) Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners, pp. 671–685. Apress, Berkeley (2019). https://doi.org/10.1007/978-1-4842-4470-8_46

    Chapter  Google Scholar 

  3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data: the story so far. In: Semantic Services, Interoperability and Web Applications: Emerging Concepts, pp. 205–227. IGI global (2011)

    Google Scholar 

  4. Bollacker, K., Cook, R., Tufts, P.: Freebase: a shared database of structured general human knowledge. In: AAAI, vol. 7, pp. 1962–1963 (2007)

    Google Scholar 

  5. Budroni, P., Claude-Burgelman, J., Schouppe, M.: Architectures of knowledge: the European open science cloud. ABI Tech. 39(2), 130–141 (2019)

    Article  Google Scholar 

  6. Chen, K., et al.: MMDetection: Open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  7. Cordts, M., et al.: The cityscapes dataset. In: CVPR Workshop on the Future of Datasets in Vision, vol. 2. sn (2015)

    Google Scholar 

  8. Cui, P., Liu, S., Zhu, W.: General knowledge embedded image representation learning. IEEE Trans. Multimed. 20(1), 198–207 (2017)

    Article  Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated rdf mappings of heterogeneous data. Ldow 1184 (2014)

    Google Scholar 

  11. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3), 94–100 (2016)

    Article  Google Scholar 

  12. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  13. Fang, Y., Kuan, K., Lin, J., Tan, C., Chandrasekhar, V.: Object detection meets knowledge graphs. In: International Joint Conferences on Artificial Intelligence (2017)

    Google Scholar 

  14. Filipiak, D., Fensel, A., Filipowska, A.: Mapping of ImageNet and Wikidata for knowledge graphs enabled computer vision. In: Business Information Systems, pp. 151–161 (2021)

    Google Scholar 

  15. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  16. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

    Google Scholar 

  17. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)

    Google Scholar 

  18. Hambardzumyan, S., et al.: Deep lake: a lakehouse for deep learning (2023)

    Google Scholar 

  19. Iglesias, E., Jozashoori, S., Chaves-Fraga, D., Collarana, D., Vidal, M.E.: SDM-RDFizer: an RML interpreter for the efficient creation of rdf knowledge graphs. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3039–3046 (2020)

    Google Scholar 

  20. Koeva, S.: Multilingual image corpus: annotation protocol. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pp. 701–707 (2021)

    Google Scholar 

  21. Koeva, S.: Ontology of visual objects. In: Proceedings of the 5th International Conference on Computational Linguistics in Bulgaria (CLIB 2022), pp. 120–129. Department of Computational Linguistics, IBL – BAS, Sofia (2022). https://aclanthology.org/2022.clib-1.14

  22. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia (2013)

    Google Scholar 

  23. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123, 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  24. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  26. Kuznetsova, A., et al.: The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vision 128(7), 1956–1981 (2020)

    Article  Google Scholar 

  27. Lambert, J., Liu, Z., Sener, O., Hays, J., Koltun, V.: MSeg: a composite dataset for multi-domain semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2879–2888 (2020)

    Google Scholar 

  28. Le-Tuan, A., Tran, T.K., Nguyen, D.M., Yuan, J., Hauswirth, M., Le-Phuoc, D.: VisionKG: towards a unified vision knowledge graph. In: ISWC (Posters/Demos/Industry) (2021)

    Google Scholar 

  29. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  30. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  31. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  32. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  33. Monka, S., Halilaj, L., Schmid, S., Rettinger, A.: Learning visual models using a knowledge graph as a trainer. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 357–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_21

    Chapter  Google Scholar 

  34. Moore, B.E., Corso, J.J.: Fiftyone. GitHub (2020). https://github.com/voxel51/fiftyone

  35. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4990–4999 (2017)

    Google Scholar 

  36. Nielsen, F.Å.: Linking ImageNet WordNet synsets with Wikidata. In: Companion Proceedings of the the Web Conference 2018, pp. 1809–1814 (2018)

    Google Scholar 

  37. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004–4012 (2016)

    Google Scholar 

  38. Paullada, A., Raji, I.D., Bender, E.M., Denton, E., Hanna, A.: Data and its (dis) contents: a survey of dataset development and use in machine learning research. Patterns 2(11), 100336 (2021)

    Article  Google Scholar 

  39. Qin, A., Xiao, M., Wu, Y., Huang, X., Zhang, X.: Mixer: efficiently understanding and retrieving visual content at web-scale. Proc. VLDB Endow. 14(12), 2906–2917 (2021)

    Article  Google Scholar 

  40. Sakaridis, C., Dai, D., Van Gool, L.: ACDC: the adverse conditions dataset with correspondences for semantic driving scene understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10765–10775 (2021)

    Google Scholar 

  41. Shah, S., Mishra, A., Yadati, N., Talukdar, P.P.: KVQA: knowledge-aware visual question answering. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8876–8884 (2019)

    Google Scholar 

  42. Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8430–8439 (2019)

    Google Scholar 

  43. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: AAAI (2017)

    Google Scholar 

  44. Sun, T., et al.: SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21371–21382 (2022)

    Google Scholar 

  45. Tran, T.K., Le-Tuan, A., Nguyen-Duc, M., Yuan, J., Le-Phuoc, D.: Fantastic data and how to query them. arXiv preprint arXiv:2201.05026 (2022)

  46. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  47. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset (2011)

    Google Scholar 

  48. Wang, X., Cai, Z., Gao, D., Vasconcelos, N.: Towards universal object detection by domain attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  49. Wen, L., et al.: UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. Comput. Vis. Image Underst. 193, 102907 (2020)

    Article  Google Scholar 

  50. Whang, S.E., Roh, Y., Song, H., Lee, J.G.: Data collection and quality challenges in deep learning: a data-centric AI perspective. VLDB J. 1–23 (2023)

    Google Scholar 

  51. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and stewardship. Sci. Data 3 (2016)

    Google Scholar 

  52. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  53. Yamamoto, Y., Egami, S., Yoshikawa, Y., Fukuda, K.: Towards semantic data management of visual computing datasets: increasing usability of MetaVD. In: Proceedings of the ISWC 2023 Posters, Demos and Industry Tracks (2023)

    Google Scholar 

  54. Yang, K., Russakovsky, O., Deng, J.: SpatialSense: an adversarially crowdsourced benchmark for spatial relation recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2051–2060 (2019)

    Google Scholar 

  55. Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2636–2645 (2020)

    Google Scholar 

  56. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2023)

    Google Scholar 

  57. Zhou, X., Koltun, V., Krähenbühl, P.: Simple multi-dataset detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7571–7580 (2022)

    Google Scholar 

  58. Zhu, C., Chen, F., Ahmed, U., Shen, Z., Savvides, M.: Semantic relation reasoning for shot-stable few-shot object detection. In: Proceedings of the IEEE/CVF Conference on computer vision and Pattern Recognition, pp. 8782–8791 (2021)

    Google Scholar 

  59. Zhu, X., Vondrick, C., Fowlkes, C.C., Ramanan, D.: Do we need more training data? Int. J. Comput. Vision 119(1), 76–92 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft, German Research Foundation under grant number 453130567 (COSMO), by the Horizon Europe Research and Innovation Actions under grant number 101092908 (SmartEdge), by the Federal Ministry for Education and Research, Germany under grant number 01IS18037A (BIFOLD) and by the Horizon Europe Research and Innovation programme under grant agreement number 101079214 (AIoTwin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicheng Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, J., Le-Tuan, A., Nguyen-Duc, M., Tran, TK., Hauswirth, M., Le-Phuoc, D. (2024). VisionKG: Unleashing the Power of Visual Datasets via Knowledge Graph. In: Meroño Peñuela, A., et al. The Semantic Web. ESWC 2024. Lecture Notes in Computer Science, vol 14665. Springer, Cham. https://doi.org/10.1007/978-3-031-60635-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60635-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60634-2

  • Online ISBN: 978-3-031-60635-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics