Abstract
This work presents a state-of-the-art predictive maintenance (PdM) framework, which is tailored to demanding cases, where information is dynamic and partial, and non-supervised solutions should be applied. Moreover, it discusses and aims to demonstrate the application of this framework to the Navarchos Fleet Management System (FMS).
The research is funded under the programme of social cohesion “THALIA 2021–2027" co-funded by the European Union, through Research and Innovation Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fan, Y., Nowaczyk, S., Rögnvaldsson, T.: Evaluation of self-organized approach for predicting compressor faults in a city bus fleet. In: INNS Conference on Big Data, pp. 447–456 (2015). https://doi.org/10.1016/j.procs.2015.07.322
Giannoulidis, A., Gounaris, A., Constantinou, I.: Exploring unsupervised anomaly detection for vehicle predictive maintenance with partial information. In: EDBT, pp. 753–761 (2024)
Giannoulidis, A., Gounaris, A., Nikolaidis, N., Naskos, A., Caljouw, D.: Investigating thresholding techniques in a real predictive maintenance scenario. SIGKDD Explor. Newsl. 24(2), 86-95 (2022). https://doi.org/10.1145/3575637.3575651
Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix profile goes MAD: variable-length motif and discord discovery in data series. Data Min. Knowl. Disc. 34(4), 1022–1071 (2020)
Rögnvaldsson, T., Nowaczyk, S., Byttner, S., Prytz, R., Svensson, M.: Self-monitoring for maintenance of vehicle fleets. Data Min. Knowl. Disc. 32(2), 344–384 (2018). https://doi.org/10.1007/s10618-017-0538-6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Giannoulidis, A., Michailidou, AV., Toliopoulos, T., Constantinou, I., Gounaris, A. (2024). Predictive Maintenance in a Fleet Management System: The Navarchos Case. In: Islam, S., Sturm, A. (eds) Intelligent Information Systems. CAiSE 2024. Lecture Notes in Business Information Processing, vol 520. Springer, Cham. https://doi.org/10.1007/978-3-031-61000-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-61000-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60999-2
Online ISBN: 978-3-031-61000-4
eBook Packages: Computer ScienceComputer Science (R0)