Abstract
Extracting knowledge from complex data in an explicit formalization is one of the main challenges in creating human understandable descriptions of data, and in bringing humans in the loop when analyzing it. Recent developments in Process Mining and Machine Learning have brought about several approaches for the extraction of an important form of knowledge: the one that discriminates between two classes of temporal event data using temporal logic patterns. In this exploratory paper, we introduce a framework for analyzing and comparing these different approaches. In particular, the framework is used to test three different state-of-the-art approaches, namely binary discovery, Deviance Mining and explanation-based techniques. While the specific results could be affected by the considered implementations, the evaluation framework is general and enables the comparison of any methods for extracting temporal logic knowledge from temporal event data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The constraint(s) are identified using the discovery tool available in the process mining toolkit RuM available at https://rulemining.org/.
- 2.
The constraint(s) are identified using the discovery tool available in the process mining toolkit RuM available at https://rulemining.org/.
- 3.
For space limitations, we report this analysis only for the logs with a declare-based labeling.
References
Bellodi, E., Riguzzi, F., Lamma, E.: Statistical relational learning for workflow mining. Intell. Data Anal. 20(3), 515–541 (2016)
Bergami, G., Di Francescomarino, C., Ghidini, C., Maggi, F.M., Puura, J.: Exploring business process deviance with sequential and declarative patterns. CoRR abs/2111.12454 (2021). https://arxiv.org/abs/2111.12454
Bose, R.P.J.C., van der Aalst, W.M.P.: Discovering signature patterns from event logs. In: CIDM, pp. 111–118. IEEE (2013)
Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. Trans. Petri Nets Other Models Concurrency (ToPNoC) 5460 (2009)
Chesani, F., et al.: Process discovery on deviant traces and other stranger things. IEEE Trans. Knowl. Data Eng. 35(11), 11784–11800 (2023)
De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Proc. of IJCAI. AAAI Press (2013)
De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: IJCAI, vol. 15, pp. 1558–1564 (2015)
Debois, S., Slaats, T.: The analysis of a real life declarative process. In: SSCI. pp. 1374–1382. IEEE (2015)
Dong, G., Bailey, J.: Overview of contrast data mining as a field and preview of an upcoming book. In: Proceedings of the IEEE 11th International Conference on Data Mining Workshops, pp. 1141–1146. ICDMW 2011, IEEE Computer Society (2011)
Fahland, D., et al.: Declarative versus imperative process modeling languages: the issue of understandability. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 353–366. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01862-6_29
Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., Navarin, N.: Explainable predictive process monitoring. CoRR abs/2008.01807 (2020). https://arxiv.org/abs/2008.01807
Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M.A., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: DSAA, pp. 80–89. IEEE (2018)
He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, pp. 507–514 (2005)
Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78469-2_16
de León, H.P., Nardelli, L., Carmona, J., vanden Broucke, S.K.L.M.: Incorporating negative information to process discovery of complex systems. Inf. Sci. 422, 480–496 (2018)
Lo, D., Khoo, S., Liu, C.: Efficient mining of iterative patterns for software specification discovery. In: KDD, pp. 460–469. ACM (2007)
Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: NIPS, pp. 4765–4774 (2017)
Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Quix, C., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31
Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business process deviance: a quest for accuracy. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 436–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45563-0_25
Partington, A., Wynn, M.T., Suriadi, S., Ouyang, C., Karnon, J.: Process mining for clinical processes: A comparative analysis of four Australian hospitals. ACM Trans. Manage. Inf. Syst. 5(4), 19:1–19:18 (2015)
Pauwels, S., Calders, T.: Bayesian network based predictions of business processes. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 159–175. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_10
Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: Procedings of EDOC. IEEE Computer Society (2007)
Richetti, P.H.P., Jazbik, L.S., Baião, F., Campos, M.L.M.: Deviance mining with treatment learning and declare-based encoding of event logs. Expert Syst. Appl. 187, 115962 (2022)
Rizzi, W., Di Francescomarino, C., Maggi, F.M.: Explainability in predictive process monitoring: when understanding helps improving. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 141–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_9
Slaats, T., Debois, S., Back, C.O.: Weighing the pros and cons: process discovery with negative examples. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 47–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_6
Suriadi, S., Mans, R.S., Wynn, M.T., Partington, A., Karnon, J.: Measuring patient flow variations: a cross-organisational process mining approach. In: Ouyang, C., Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 43–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08222-6_4
Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Understanding process behaviours in a large insurance company in Australia: a case study. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 449–464. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_29
Taymouri, F., La Rosa, M., Dumas, M., Maggi, F.M.: Business process variant analysis: survey and classification. Knowl. Based Syst. 211, 106557 (2021)
Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data 13(2), 17:1–17:57 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Di Francescomarino, C., Donadello, I., Ghidini, C., Maggi, F.M., Rizzi, W., Tessaris, S. (2024). Making Sense of Temporal Event Data:A Framework for Comparing Techniques for the Discovery of Discriminative Temporal Patterns. In: Guizzardi, G., Santoro, F., Mouratidis, H., Soffer, P. (eds) Advanced Information Systems Engineering. CAiSE 2024. Lecture Notes in Computer Science, vol 14663. Springer, Cham. https://doi.org/10.1007/978-3-031-61057-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-61057-8_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61056-1
Online ISBN: 978-3-031-61057-8
eBook Packages: Computer ScienceComputer Science (R0)