Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Making Sense of Temporal Event Data:A Framework for Comparing Techniques for the Discovery of Discriminative Temporal Patterns

  • Conference paper
  • First Online:
Advanced Information Systems Engineering (CAiSE 2024)

Abstract

Extracting knowledge from complex data in an explicit formalization is one of the main challenges in creating human understandable descriptions of data, and in bringing humans in the loop when analyzing it. Recent developments in Process Mining and Machine Learning have brought about several approaches for the extraction of an important form of knowledge: the one that discriminates between two classes of temporal event data using temporal logic patterns. In this exploratory paper, we introduce a framework for analyzing and comparing these different approaches. In particular, the framework is used to test three different state-of-the-art approaches, namely binary discovery, Deviance Mining and explanation-based techniques. While the specific results could be affected by the considered implementations, the evaluation framework is general and enables the comparison of any methods for extracting temporal logic knowledge from temporal event data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The constraint(s) are identified using the discovery tool available in the process mining toolkit RuM available at https://rulemining.org/.

  2. 2.

    The constraint(s) are identified using the discovery tool available in the process mining toolkit RuM available at https://rulemining.org/.

  3. 3.

    For space limitations, we report this analysis only for the logs with a declare-based labeling.

References

  1. Bellodi, E., Riguzzi, F., Lamma, E.: Statistical relational learning for workflow mining. Intell. Data Anal. 20(3), 515–541 (2016)

    Article  Google Scholar 

  2. Bergami, G., Di Francescomarino, C., Ghidini, C., Maggi, F.M., Puura, J.: Exploring business process deviance with sequential and declarative patterns. CoRR abs/2111.12454 (2021). https://arxiv.org/abs/2111.12454

  3. Bose, R.P.J.C., van der Aalst, W.M.P.: Discovering signature patterns from event logs. In: CIDM, pp. 111–118. IEEE (2013)

    Google Scholar 

  4. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. Trans. Petri Nets Other Models Concurrency (ToPNoC) 5460 (2009)

    Google Scholar 

  5. Chesani, F., et al.: Process discovery on deviant traces and other stranger things. IEEE Trans. Knowl. Data Eng. 35(11), 11784–11800 (2023)

    Article  Google Scholar 

  6. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Proc. of IJCAI. AAAI Press (2013)

    Google Scholar 

  7. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: IJCAI, vol. 15, pp. 1558–1564 (2015)

    Google Scholar 

  8. Debois, S., Slaats, T.: The analysis of a real life declarative process. In: SSCI. pp. 1374–1382. IEEE (2015)

    Google Scholar 

  9. Dong, G., Bailey, J.: Overview of contrast data mining as a field and preview of an upcoming book. In: Proceedings of the IEEE 11th International Conference on Data Mining Workshops, pp. 1141–1146. ICDMW 2011, IEEE Computer Society (2011)

    Google Scholar 

  10. Fahland, D., et al.: Declarative versus imperative process modeling languages: the issue of understandability. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 353–366. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01862-6_29

    Chapter  Google Scholar 

  11. Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., Navarin, N.: Explainable predictive process monitoring. CoRR abs/2008.01807 (2020). https://arxiv.org/abs/2008.01807

  12. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M.A., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: DSAA, pp. 80–89. IEEE (2018)

    Google Scholar 

  13. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, pp. 507–514 (2005)

    Google Scholar 

  14. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78469-2_16

    Chapter  Google Scholar 

  15. de León, H.P., Nardelli, L., Carmona, J., vanden Broucke, S.K.L.M.: Incorporating negative information to process discovery of complex systems. Inf. Sci. 422, 480–496 (2018)

    Google Scholar 

  16. Lo, D., Khoo, S., Liu, C.: Efficient mining of iterative patterns for software specification discovery. In: KDD, pp. 460–469. ACM (2007)

    Google Scholar 

  17. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: NIPS, pp. 4765–4774 (2017)

    Google Scholar 

  18. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Quix, C., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31

    Chapter  Google Scholar 

  19. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business process deviance: a quest for accuracy. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 436–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45563-0_25

    Chapter  Google Scholar 

  20. Partington, A., Wynn, M.T., Suriadi, S., Ouyang, C., Karnon, J.: Process mining for clinical processes: A comparative analysis of four Australian hospitals. ACM Trans. Manage. Inf. Syst. 5(4), 19:1–19:18 (2015)

    Google Scholar 

  21. Pauwels, S., Calders, T.: Bayesian network based predictions of business processes. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 159–175. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_10

    Chapter  Google Scholar 

  22. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: Procedings of EDOC. IEEE Computer Society (2007)

    Google Scholar 

  23. Richetti, P.H.P., Jazbik, L.S., Baião, F., Campos, M.L.M.: Deviance mining with treatment learning and declare-based encoding of event logs. Expert Syst. Appl. 187, 115962 (2022)

    Article  Google Scholar 

  24. Rizzi, W., Di Francescomarino, C., Maggi, F.M.: Explainability in predictive process monitoring: when understanding helps improving. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 141–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_9

    Chapter  Google Scholar 

  25. Slaats, T., Debois, S., Back, C.O.: Weighing the pros and cons: process discovery with negative examples. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 47–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_6

    Chapter  Google Scholar 

  26. Suriadi, S., Mans, R.S., Wynn, M.T., Partington, A., Karnon, J.: Measuring patient flow variations: a cross-organisational process mining approach. In: Ouyang, C., Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 43–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08222-6_4

    Chapter  Google Scholar 

  27. Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Understanding process behaviours in a large insurance company in Australia: a case study. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 449–464. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_29

    Chapter  Google Scholar 

  28. Taymouri, F., La Rosa, M., Dumas, M., Maggi, F.M.: Business process variant analysis: survey and classification. Knowl. Based Syst. 211, 106557 (2021)

    Article  Google Scholar 

  29. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data 13(2), 17:1–17:57 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Donadello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Francescomarino, C., Donadello, I., Ghidini, C., Maggi, F.M., Rizzi, W., Tessaris, S. (2024). Making Sense of Temporal Event Data:A Framework for Comparing Techniques for the Discovery of Discriminative Temporal Patterns. In: Guizzardi, G., Santoro, F., Mouratidis, H., Soffer, P. (eds) Advanced Information Systems Engineering. CAiSE 2024. Lecture Notes in Computer Science, vol 14663. Springer, Cham. https://doi.org/10.1007/978-3-031-61057-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61057-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61056-1

  • Online ISBN: 978-3-031-61057-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics