Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Formalizing for Proving the System Safety of the Software Component for a Small Sized Guided Transport System

  • Conference paper
  • First Online:
Risks and Security of Internet and Systems (CRiSIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14529))

Included in the following conference series:

  • 67 Accesses

Abstract

This paper focuses on the design and analysis of a safe software component respecting the signalling system of railway applications, specifically addressing the challenges related to ensuring safe train movements. The proposed system incorporates hybrid aspects, combining discrete and continuous behaviours, to effectively manage train operations. The Rodin platform and the Why3 prover are considered to provide formal verification and validation of the system’s correctness. The approach refers to existing norms, like subset 125 and industrial feed backs for formal proofs of safety properties in the metro area. Nevertheless, as the considered 8 vehicles seats autonomous guided systems running on tires, the dynamic this less than two tones cyber physical system could be quite different. As a consequence, holding the exact equation must be performed to check the consistency of common assumptions.

The Why3 prover is integrated into the development process, allowing for the verification of system properties and the generation of proof obligations. This enhances the assurance of the system’s correctness and compliance with safety requirements.

The combination of the Rodin platform, which supports the formal modeling and analysis of hybrid systems, and the Why3 prover, which provides powerful reasoning capabilities, offers a comprehensive approach to the design and verification of complex signalling systems in railway applications. The proposed methodology contributes aims to insure safety by comparing industrial approach consistency with industrial feed-backs and norms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/RacemBougacha/ATO-over-ETCS.git.

References

  1. Aït-Ameur, Y., Bogomolov, S., Dupont, G., Iliasov, A., Romanovsky, A.B., Stankaitis, P.: A refinement-based formal development of cyber-physical railway signalling systems. Formal Aspects Comput. 35(1), 3:1 (2023). https://doi.org/10.1145/3524052

  2. Bon, P., Collart-Dutilleul, S., Bougacha, R.: Ato over etcs: a system analysis for freight trains. Comput. Railways XVIII: Railway Eng. Des. Oper. 213, 37 (2022)

    Google Scholar 

  3. Bougacha, R., Laleau, R., Bon, P., Collart-Dutilleul, S., Ben Ayed, R.: Modeling train systems: from high-level architecture graphical models to formal specifications. In: Kallel, S., Jmaiel, M., Zulkernine, M., Hadj Kacem, A., Cuppens, F., Cuppens, N. (eds.) CRiSIS 2022. LNCS, vol. 13857, pp. 153–168. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31108-6_12

    Chapter  Google Scholar 

  4. Brucker, A.D., Wolff, B.: Isabelle/DOF: design and implementation. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS, vol. 11724, pp. 275–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30446-1_15

    Chapter  Google Scholar 

  5. Burdy, L., Déharbe, D., Prun, É.: Interfacing automatic proof agents in atelier B: introducing “IAPA”. In: Proceedings of the Third Workshop on Formal Integrated Development Environment, F-IDE@FM 2016, Limassol, Cyprus, November 8, 2016. EPTCS, vol. 240, pp. 82–90 (2016). https://doi.org/10.4204/EPTCS.240.6

  6. Butler, M.J., Abrial, J., Banach, R.: Modelling and refining hybrid systems in event-b and rodin. In: From Action Systems to Distributed Systems - The Refinement Approach, pp. 29–42. Chapman and Hall/CRC (2016). https://doi.org/10.1201/b20053-5

  7. Butler, M., Maamria, I.: Practical theory extension in event-B. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-4_5

    Chapter  Google Scholar 

  8. Comptier, M., Déharbe, D., Perez, J.M., Mussat, L., Thibaut, P., Sabatier, D.: Safety analysis of a CBTC system: a rigorous approach with event-b. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) Reliability, Safety, and Security of Railway Systems. LNCS, vol. 10598, pp. 148–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4_10

  9. Dupont, G., Ameur, Y.A., Pantel, M., Singh, N.K.: Proof-based approach to hybrid systems development: Dynamic logic and event-b. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 155–170. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_11

  10. Dutilleul, S.C., Bon, P., Hamidi, A.: A railway norms application for small traffic railway lines autonomous vehicle. In: 2023 7th IEEE/IFAC International Conference on Control, Automation and Diagnosis, pp. 1–6 (2023). https://doi.org/10.1109/ICCAD57653.2023.10152328

  11. Fantechi, A.: The role of formal methods in software development for railway applications. In: Software Design and Development: Concepts, Methodologies, Tools, and Applications, pp. 1103–1118. IGI Global (2014)

    Google Scholar 

  12. Holt, J., Perry, S., of Engineering, I., Technology: SysML for Systems Engineering. Computing and Networks Series, Institution of Engineering and Technology (2008). https://books.google.fr/books?id=OEKtufR7spYC

  13. Lecomte, T.: Programming the CLEARSY safety platform with B. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 124–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6_9

    Chapter  Google Scholar 

  14. Lecomte, T.: Safe and secure architecture using diverse formal methods. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, Part IV. LNCS, vol. 13704, pp. 321–333. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19762-8_24

  15. Mussat, L., Sabatier, D.: Modeling modelling and proof of safety of railway transportation systems. In: 19 Congrés de Maitrise des Risques et sureté de Fonctionnement- Dijon 21-23 octobre 2014, pp. 1–5. Springer (2014)

    Google Scholar 

  16. Peleska, J., Haxthausen, A.E., Lecomte, T.: Standardisation considerations for autonomous train control. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, Part IV. LNCS, vol. 13704, pp. 286–307. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19762-8_22

  17. Riviere, P., Singh, N.K., Aït-Ameur, Y., Dupont, G.: Standalone event-b models analysis relying on the EB4EB meta-theory. In: Glässer, U., Creissac Campos, J., Méry, D., Palanque, P. (eds.) ABZ 2023. LNCS, vol. 14010, pp. 193–211. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33163-3_15

  18. Stankaitis, P.: A Formal Methodology for Engineering Heterogeneous Railway Signalling Systems. Ph.D. thesis, Newcastle University (2021)

    Google Scholar 

  19. Sun, P.: Ingénierie de modèle pour la sécurité des systèmes critiques ferroviaires. Ph.D. thesis, École centrale de Lille (2015)

    Google Scholar 

  20. Subset 26: “system requirements specification”. Std, UNISIG (2016). https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en

  21. Wang, Z., Quaglietta, E., Bartholomeus, M.G.P., Goverde, R.M.P.: Assessment of architectures for automatic train operation driving functions. J. Rail Transp. Plan. Manag. 24, 100352 (2022). https://doi.org/10.1016/j.jrtpm.2022.100352

  22. Withers, J., Stoehr, N., et al.: Automated train operations (ATO) safety and sensor development [research results]. Technical report, United States. Department of Transportation. Federal Railroad Administration ... (2020)

    Google Scholar 

Download references

Acknowledgement

The Ferromoblile project is granted by ADEME in France 2030 program (grant number 2282D0215-F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Collart-Dutilleul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamidi, A., Collart-Dutilleul, S., Bon, P. (2024). Formalizing for Proving the System Safety of the Software Component for a Small Sized Guided Transport System. In: Ait Wakrime, A., Navarro-Arribas, G., Cuppens, F., Cuppens, N., Benaini, R. (eds) Risks and Security of Internet and Systems. CRiSIS 2023. Lecture Notes in Computer Science, vol 14529. Springer, Cham. https://doi.org/10.1007/978-3-031-61231-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61231-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61230-5

  • Online ISBN: 978-3-031-61231-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics