Abstract
Neural networks have become popular due to their versatility and state-of-the-art results in many applications, such as image classification, natural language processing, speech recognition, forecasting, etc. These applications are also used in resource-constrained environments such as embedded devices. In this work, the susceptibility of neural network implementations to reverse engineering is explored on the NVIDIA Jetson Nano microcomputer via side-channel analysis. To this end, an architecture extraction attack is presented. In the attack, 15 popular convolutional neural network architectures (EfficientNets, MobileNets, NasNet, etc.) are implemented on the GPU of Jetson Nano and the electromagnetic radiation of the GPU is analyzed during the inference operation of the neural networks. The results of the analysis show that neural network architectures are easily distinguishable using deep learning-based side-channel analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
https://web.archive.org/web/20220119062522/. https://www.riscure.com/uploads/2017/07/inspector_brochure.pdf. Accessed 25 Jan 2022
Google translate research. https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI–NN: reverse engineering of neural network architectures through electromagnetic side channel. In: 28th USENIX Security Symposium USENIX Security 2019, pp. 515–532 (2019)
Bernstein, D.J.: Cache-timing attacks on AES (2005)
Chmielewski, Ł, Weissbart, L.: On reverse engineering neural network implementation on GPU. In: Zhou, J., et al. (eds.) ACNS 2021. LNCS, vol. 12809, pp. 96–113. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81645-2_7
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Elibol, F., Sarac, U., Erer, I.: Realistic eavesdropping attacks on computer displays with low-cost and mobile receiver system. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 1767–1771. IEEE (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hongxin, Z., Yuewang, H., Jianxin, W., Yinghua, L., Jinling, Z.: Recognition of electro-magnetic leakage information from computer radiation with SVM. Comput. Secur. 28(1–2), 72–76 (2009)
Howard, A., et al.: Searching for MobileNetV3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptogr. Hardware Embed. Syst. 148–179 (2019)
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105 (2012)
Kuhn, M.G., Anderson, R.J.: Soft tempest: hidden data transmission using electromagnetic emanations. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 124–142. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8_10
Liang, S., Zhan, Z., Yao, F., Cheng, L., Zhang, Z.: Clairvoyance: exploiting far-field EM emanations of GPU to “see” your DNN models through obstacles at a distance. In: 2022 IEEE Security and Privacy Workshops (SPW), pp. 312–322 (2022). https://doi.org/10.1109/SPW54247.2022.9833894
Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)
Liu, Z., et al.: Screen gleaning: a screen reading TEMPEST attack on mobile devices exploiting an electromagnetic side channel. In: 28th Annual Network and Distributed System Security Symposium, NDSS 2021, Virtually, 21–25, February 2021. The Internet Society (2021). https://www.ndss-symposium.org/ndss-paper/screen-gleaning-a-screen-reading-tempest-attack-on-mobile-devices-exploiting-an-electromagnetic-side-channel/
Maia, H.T., Xiao, C., Li, D., Grinspun, E., Zheng, C.: Can one hear the shape of a neural network?: snooping the GPU via magnetic side channel. In: Butler, K.R.B., Thomas, K. (eds.) 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, 10–12 August 2022, pp. 4383–4400. USENIX Association (2022). https://www.usenix.org/conference/usenixsecurity22/presentation/maia
Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards, vol. 31. Springer, Cham (2008)
OpenAI: GPT-4 technical report (2023). https://doi.org/10.48550/arXiv.2303.08774
Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 604–624 (2020)
Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryptology ePrint Archive (2002)
Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: SoK: deep learning-based physical side-channel analysis. ACM Comput. Surv. (2022)
Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17
Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)
Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Singh, S.: The Code Book, vol. 7. Doubleday New York (1999)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Van Eck, W.: Electromagnetic radiation from video display units: an eavesdropping risk? Comput. Secur. 4(4), 269–286 (1985)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)
Xiang, Y., et al.: Open DNN box by power side-channel attack. IEEE Trans. Circuits Syst. II Express Briefs 67(11), 2717–2721 (2020). https://doi.org/10.1109/TCSII.2020.2973007
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)
Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Horváth, P., Chmielewski, L., Weissbart, L., Batina, L., Yarom, Y. (2024). CNN Architecture Extraction on Edge GPU. In: Andreoni, M. (eds) Applied Cryptography and Network Security Workshops. ACNS 2024. Lecture Notes in Computer Science, vol 14586. Springer, Cham. https://doi.org/10.1007/978-3-031-61486-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-61486-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61485-9
Online ISBN: 978-3-031-61486-6
eBook Packages: Computer ScienceComputer Science (R0)