Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CNN Architecture Extraction on Edge GPU

  • Conference paper
  • First Online:
Applied Cryptography and Network Security Workshops (ACNS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14586))

Included in the following conference series:

  • 371 Accesses

Abstract

Neural networks have become popular due to their versatility and state-of-the-art results in many applications, such as image classification, natural language processing, speech recognition, forecasting, etc. These applications are also used in resource-constrained environments such as embedded devices. In this work, the susceptibility of neural network implementations to reverse engineering is explored on the NVIDIA Jetson Nano microcomputer via side-channel analysis. To this end, an architecture extraction attack is presented. In the attack, 15 popular convolutional neural network architectures (EfficientNets, MobileNets, NasNet, etc.) are implemented on the GPU of Jetson Nano and the electromagnetic radiation of the GPU is analyzed during the inference operation of the neural networks. The results of the analysis show that neural network architectures are easily distinguishable using deep learning-based side-channel analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://web.archive.org/web/20220119062522/. https://www.riscure.com/uploads/2017/07/inspector_brochure.pdf. Accessed 25 Jan 2022

  2. Google translate research. https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html

  3. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI–NN: reverse engineering of neural network architectures through electromagnetic side channel. In: 28th USENIX Security Symposium USENIX Security 2019, pp. 515–532 (2019)

    Google Scholar 

  4. Bernstein, D.J.: Cache-timing attacks on AES (2005)

    Google Scholar 

  5. Chmielewski, Ł, Weissbart, L.: On reverse engineering neural network implementation on GPU. In: Zhou, J., et al. (eds.) ACNS 2021. LNCS, vol. 12809, pp. 96–113. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81645-2_7

    Chapter  Google Scholar 

  6. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  7. Elibol, F., Sarac, U., Erer, I.: Realistic eavesdropping attacks on computer displays with low-cost and mobile receiver system. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 1767–1771. IEEE (2012)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hongxin, Z., Yuewang, H., Jianxin, W., Yinghua, L., Jinling, Z.: Recognition of electro-magnetic leakage information from computer radiation with SVM. Comput. Secur. 28(1–2), 72–76 (2009)

    Article  Google Scholar 

  10. Howard, A., et al.: Searching for MobileNetV3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  11. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  14. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptogr. Hardware Embed. Syst. 148–179 (2019)

    Google Scholar 

  15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  18. Kuhn, M.G., Anderson, R.J.: Soft tempest: hidden data transmission using electromagnetic emanations. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 124–142. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8_10

    Chapter  Google Scholar 

  19. Liang, S., Zhan, Z., Yao, F., Cheng, L., Zhang, Z.: Clairvoyance: exploiting far-field EM emanations of GPU to “see” your DNN models through obstacles at a distance. In: 2022 IEEE Security and Privacy Workshops (SPW), pp. 312–322 (2022). https://doi.org/10.1109/SPW54247.2022.9833894

  20. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  21. Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

    Article  Google Scholar 

  22. Liu, Z., et al.: Screen gleaning: a screen reading TEMPEST attack on mobile devices exploiting an electromagnetic side channel. In: 28th Annual Network and Distributed System Security Symposium, NDSS 2021, Virtually, 21–25, February 2021. The Internet Society (2021). https://www.ndss-symposium.org/ndss-paper/screen-gleaning-a-screen-reading-tempest-attack-on-mobile-devices-exploiting-an-electromagnetic-side-channel/

  23. Maia, H.T., Xiao, C., Li, D., Grinspun, E., Zheng, C.: Can one hear the shape of a neural network?: snooping the GPU via magnetic side channel. In: Butler, K.R.B., Thomas, K. (eds.) 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, 10–12 August 2022, pp. 4383–4400. USENIX Association (2022). https://www.usenix.org/conference/usenixsecurity22/presentation/maia

  24. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards, vol. 31. Springer, Cham (2008)

    Google Scholar 

  25. OpenAI: GPT-4 technical report (2023). https://doi.org/10.48550/arXiv.2303.08774

  26. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 604–624 (2020)

    Article  MathSciNet  Google Scholar 

  27. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryptology ePrint Archive (2002)

    Google Scholar 

  28. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: SoK: deep learning-based physical side-channel analysis. ACM Comput. Surv. (2022)

    Google Scholar 

  29. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17

    Chapter  Google Scholar 

  30. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017)

  31. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  32. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  33. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017)

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  35. Singh, S.: The Code Book, vol. 7. Doubleday New York (1999)

    Google Scholar 

  36. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  37. Van Eck, W.: Electromagnetic radiation from video display units: an eavesdropping risk? Comput. Secur. 4(4), 269–286 (1985)

    Article  Google Scholar 

  38. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  39. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)

    Article  Google Scholar 

  40. Xiang, Y., et al.: Open DNN box by power side-channel attack. IEEE Trans. Circuits Syst. II Express Briefs 67(11), 2717–2721 (2020). https://doi.org/10.1109/TCSII.2020.2973007

    Article  Google Scholar 

  41. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  42. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  43. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Horváth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Horváth, P., Chmielewski, L., Weissbart, L., Batina, L., Yarom, Y. (2024). CNN Architecture Extraction on Edge GPU. In: Andreoni, M. (eds) Applied Cryptography and Network Security Workshops. ACNS 2024. Lecture Notes in Computer Science, vol 14586. Springer, Cham. https://doi.org/10.1007/978-3-031-61486-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61486-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61485-9

  • Online ISBN: 978-3-031-61486-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics