Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SSIVD-Net: A Novel Salient Super Image Classification and Detection Technique for Weaponized Violence

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1018))

Included in the following conference series:

  • 205 Accesses

Abstract

Detection of violence and weaponized violence in closed-circuit television (CCTV) footage requires a comprehensive approach. In this work, we introduce the Smart-City CCTV Violence Detection (SCVD) dataset, specifically designed to facilitate the learning of weapon distribution in surveillance videos. To tackle the complexities of analyzing 3D surveillance video for violence recognition tasks, we propose a novel technique called SSIVD-Net (Salient-Super-Image for Violence Detection). Our method reduces 3D video data complexity, dimensionality, and information loss while improving inference, performance, and explainability through salient-super-Image representations. Considering the scalability and sustainability requirements of futuristic smart cities, the authors introduce the Salient-Classifier, a novel architecture combining a kernelized approach with a residual learning strategy. We evaluate variations of SSIVD-Net and Salient Classifier on our SCVD dataset and benchmark against state-of-the-art (SOTA) models commonly employed in violence detection. Our approach exhibits significant improvements in detecting both weaponized and non-weaponized violence instances. By advancing the SOTA in violence detection, our work offers a practical and scalable solution suitable for real-world applications. The proposed methodology not only addresses the challenges of violence detection in CCTV footage but also contributes to the understanding of weapon distribution in smart surveillance. Ultimately, our research findings should enable smarter and more secure cities, as well as enhance public safety measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/tensorflow/tensorflow.

  2. 2.

    https://github.com/keras-team/keras.

  3. 3.

    https://github.com/pytorch/pytorch.

References

  1. Bhatti, M.T., Khan, M.G., Aslam, M., Fiaz, M.J.: Weapon detection in real-time CCTV videos using deep learning. IEEE Access 9, 34366–34382 (2021)

    Article  Google Scholar 

  2. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.: YOLOv4: optimal speed and accuracy of object detection (2020)

    Google Scholar 

  3. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset (2018)

    Google Scholar 

  4. Cheng, M., Cai, K., Li, M.: RWF-2000: an open large scale video database for violence detection. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 4183–4190 (2021)

    Google Scholar 

  5. Fan, Q., Chen, C.-F., Panda, R.: An image classifier can suffice for video understanding, June 2021. https://arxiv.org/

  6. Girshick, R.: Fast R-CNN (2015)

    Google Scholar 

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation (2013). https://arxiv.org/. Accessed 17 Sep 2022

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. arXiv preprint arXiv:1703.06870 (2017)

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  10. Islam, Z., Rukonuzzaman, M., Ahmed, R., Kabir, M.H., Farazi, M.: Efficient two-stream network for violence detection using separable convolutional LSTM. In: 2021 International Joint Conference on Neural Networks (IJCNN), July 2021. IEEE (2021)

    Google Scholar 

  11. Jain, H., Vikram, A., Mohana, Kashyap, A., Jain, A.: Weapon detection using artificial intelligence and deep learning for security applications. In: 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC) (2020)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017)

    Article  Google Scholar 

  13. Mumtaz, A., Sargano, A.B., Habib, Z.: Violence detection in surveillance videos with deep network using transfer learning. In: 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS), pp. 558–563 (2018)

    Google Scholar 

  14. Nadeem, M.S., Franqueira, V.N.L., Kurugollu, F., Zhai, X.: WVD: a new synthetic dataset for video-based violence detection. In: Bramer, M., Petridis, M. (eds.) SGAI 2019. LNCS (LNAI), vol. 11927, pp. 158–164. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34885-4_13

    Chapter  Google Scholar 

  15. Nievas, E.R., Suarez, O.D., Garcia, G.B., Sukthankar, R.: Hockey fight detection dataset. In: Computer Analysis of Images and Patterns, pp. 332–339. Springer, Heidelberg (2011)

    Google Scholar 

  16. Perez, M., Kot, A.C., Rocha, A.: Detection of real-world fights in surveillance videos. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2019, pp. 2662–2666 (2019)

    Google Scholar 

  17. Pérez-Hernández, F., Tabik, S., Lamas, A., Olmos, R., Fujita, H., Herrera, F.: Object detection binary classifiers methodology based on deep learning to identify small objects handled similarly: application in video surveillance. Knowl. Based Syst. 194, 105590 (2020)

    Article  Google Scholar 

  18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2015). https://arxiv.org/. Accessed 17 Sep 2022

  19. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger (2016). https://arxiv.org/

  20. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks (2015). https://arxiv.org/

  22. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. CoRR, abs/1402.1128 (2014)

    Google Scholar 

  23. Sharma, M., Baghel, R.: Video surveillance for violence detection using deep learning. In: Borah, S., Emilia Balas, V., Polkowski, Z. (eds.) Advances in Data Science and Management. LNDECT, vol. 37, pp. 411–420. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0978-0_40

    Chapter  Google Scholar 

  24. Soliman, M.M., Kamal, M.H., El-Massih Nashed, M.A., Mostafa, Y.M., Chawky, B.S., Khattab, D.: Violence recognition from videos using deep learning techniques. In: 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 80–85 (2019)

    Google Scholar 

  25. Sudhakaran, S., Lanz, O.: Learning to detect violent videos using convolutional long short-term memory (2017)

    Google Scholar 

  26. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks (2014). https://arxiv.org/

  27. Verma, G.K., Dhillon, A.: A handheld gun detection using faster R-CNN deep learning. In: Proceedings of the 7th International Conference on Computer and Communication Technology, ICCCT-2017 (2017)

    Google Scholar 

  28. Wang, C., Yang, J., Xie, L., Yuan, J.: Kervolutional neural networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2019

    Google Scholar 

  29. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toluwani Aremu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aremu, T., Zhiyuan, L., Alameeri, R., Khan, M., Saddik, A.E. (2024). SSIVD-Net: A Novel Salient Super Image Classification and Detection Technique for Weaponized Violence. In: Arai, K. (eds) Intelligent Computing. SAI 2024. Lecture Notes in Networks and Systems, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-031-62269-4_2

Download citation

Publish with us

Policies and ethics