Abstract
The development and evolution of advanced energy system technologies is one of the most important goals for the global community in recent years. In this effort, the utilization and analysis of energy time series is of decisive importance for the understanding of energy consumption and production patterns. However, access to real data may be limited due to the sensitivity of the information and the limited amount of data already available. This has led to the use of methods to produce artificial data in order to enrich existing datasets. Generative Adversarial Networks or GANs are an approach to generative modeling using deep learning methods based on the logic of adversarial learning, and consist of two adversarial neural networks, a generator and a discriminator, which work together to produce realistic and unbiased data. The subject of the current paper is the creation of a GAN pipeline capable of producing power time series that resemble those observed in the real world, preserving the main characteristics and diversity of the observed electrical devices. The proposed method shows promising results, outperforming other state-of-the-art models in two calculated metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Howe, B., Stoyanovich, J., Ping, H., Herman, B., Gee, M.: Synthetic data for social good (2017). arXiv preprint arXiv:1710.08874
Soltana, G., Sabetzadeh, M., Briand, L.C.: Synthetic data generation for statistical testing. In: 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 872ā882. IEEE, October 2017
Quintana, D.S.: A synthetic dataset primer for the biobehavioural sciences to promote reproducibility and hypothesis generation, 11 March 2020
Rajotte, J.F., Bergen, R., Buckeridge, D.L., El Emam, K., Ng, R., Strome, E.: Synthetic data as an enabler for machine learning applications in medicine. iScience 25(11) (2022)
Ralanamahatana, C.A., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M., Das, G.: Mining time series data. In: Data Mining and Knowledge Discovery Handbook, pp. 1069-1103 (2005)
Pereira, L., Quintal, F., GonƧalves, R., Nunes, N.J.: SustData: a public dataset for ICT4S electric energy research. In: ICT for Sustainability 2014 (ICT4S 2014), pp. 359ā368. Atlantis Press, August 2014
Kolter, J.Z., Johnson, M.J.: REDD: a public data set for energy disaggregation research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, vol. 25, pp. 59ā62. Citeseer, August 2011
Parson, O., et al.: Dataport and NILMTK: a building data set designed for non-intrusive load monitoring. In: 2015 IEEE Global Conference on Signal and Information Processing (globalSIP). IEEE (2015)
Ruano, A., Hernandez, A., UreƱa, J., Ruano, M., Garcia, J.: NILM techniques for intelligent home energy management and ambient assisted living: a review. Energies 12(11), 2203 (2019). https://doi.org/10.3390/en12112203
Naghibi, B., Deilami, S.: Non-intrusive load monitoring and supplementary techniques for home energy management. In: 2014 Australasian Universities Power Engineering Conference (AUPEC), pp. 1ā5. IEEE, September 2014
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. arXiv preprint arXiv:1611.02163 (2016)
Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:1701.04862 (2017)
Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214ā223. PMLR, July 2017
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)
Harell, A., Jones, R., Makonin, S., Bajic, I.V.: PowerGAN: synthesizing appliance power signatures using generative adversarial networks. arXiv preprint arXiv:2007.13645 (2020)
Smith, K.E., Smith, A.O.: Conditional GAN for timeseries generation. arXiv preprint arXiv:2006.16477 (2020)
Kelly, J., Knottenbelt, W.: Neural NILM: deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, Seoul, Republic of Korea, 4ā5 November 2015, pp. 55ā64 (2015)
Gomes, E., Pereira, L.: PB-NILM: pinball guided deep non-intrusive load monitoring. IEEE Access 8, 48386ā48398 (2020)
Krystalakos, O., Nalmpantis, C., Vrakas, D.: Sliding window approach for online energy disaggregation using artificial neural networks. In: Proceedings of the 10th Hellenic Conference on Artificial Intelligence, pp. 1ā6, July 2018
Virtsionis-Gkalinikis, N., Nalmpantis, C., Vrakas, D.: SAED: self-attentive energy disaggregation. Mach. Learn. 112, 4081ā4100 (2023). https://doi.org/10.1007/s10994-021-06106-3
Nalmpantis, C., Virtsionis Gkalinikis, N., Vrakas, D.: Neural Fourier energy disaggregation. Sensors (Basel) 22(2), 473 (2022). https://doi.org/10.3390/s22020473
Virtsionis Gkalinikis, N., Nalmpantis, C., Vrakas, D.: Variational regression for multi-target energy disaggregation. Sensors 23(4), 2051 (2023). https://doi.org/10.3390/s23042051
Kaselimi, M., Doulamis, N., Voulodimos, A., Doulamis, A., Protopapadakis, E.: EnerGAN++: a generative adversarial gated recurrent network for robust energy disaggregation. IEEE Open J. Sig. Process. 2, 1ā16 (2020)
Dimitriadis, I., Virtsionis Gkalinikis, N., Gkiouzelis, N., Vakali, A., Athanasiadis, C., Baslis, C.: HeartDIS: a generalizable end-to-end energy disaggregation pipeline. Energies 16(13), 5115 (2023). https://doi.org/10.3390/en16135115
Kelly, J., Knottenbelt, W.: The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2(1), 1ā14 (2015)
Murray, D., Stankovic, L., Stankovic, V.: An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study. Sci. Data 4(1), 1ā12 (2017)
Klemenjak, C., Kovatsch, C., Herold, M., Elmenreich, W.: A synthetic energy dataset for non-intrusive load monitoring in households. Sci. Data 7(1), 108 (2020)
Ahmed, A.M.A., Zhang, Y., Eliassen, F.: Generative adversarial networks and transfer learning for non-intrusive load monitoring in smart grids. In: 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 1ā7. IEEE (2020)
Kurach, K., LuÄiÄ, M., Zhai, X., Michalski, M., Gelly, S.: A large-scale study on regularization and normalization in GANs. In: International Conference on Machine Learning, pp. 3581ā3590. PMLR, May 2019
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gkoutroumpi, C., Gkalinikis, N.V., Vrakas, D. (2024). SGAN: Appliance Signatures Data Generation forĀ NILM Applications Using GANs. In: Arai, K. (eds) Intelligent Computing. SAI 2024. Lecture Notes in Networks and Systems, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-031-62269-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-62269-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62268-7
Online ISBN: 978-3-031-62269-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)