Abstract
The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising Noisy Intermediate Quantum (NISQ) Algorithms in solving combinatorial optimizations and displays potential over classical heuristic techniques. Unfortunately, QAOA’s performance depends on the choice of parameters and standard optimizers often fail to identify key parameters due to the complexity and mystery of these optimization functions. In this paper, we benchmark QAOA circuits modified with metaheuristic optimizers against classical and quantum heuristics to identify QAOA parameters. The experimental results reveal insights into the strengths and limitations of both Quantum Annealing and metaheuristic-integrated QAOA across different problem domains. The findings suggest that the hybrid approach can leverage classical optimization strategies to enhance the solution quality and convergence speed of QAOA, particularly for problems with rugged landscapes and limited quantum resources. Furthermore, the study provides guidelines for selecting the most appropriate approach based on the specific characteristics of the optimization problem at hand.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Glover, F.W., Kochenberger, G.A.: A tutorial on formulating QUBO models. CoRR, abs/1811.11538 (2018). http://arxiv.org/abs/1811.11538
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 [quant-ph] (2014)
Sturm, A.: Theory and implementation of the quantum approximate optimization algorithm: a comprehensible introduction and case study using Qiskit and IBM quantum computers. arXiv preprint (2023). https://arxiv.org/abs/2301.09535
de Falco, D., Tamascelli, D.: An introduction to quantum annealing. RAIRO Theoret. Inform. Appl. 45(1), 99–116 (2011). https://doi.org/10.1051/ita/2011013
Pelofske, E., Bärtschi, A., Eidenbenz, S.: Quantum annealing vs. QAOA: 127 qubit higher-order Ising problems on NISQ computers. In: Bhatele, A., Hammond, J., Baboulin, M., Kruse, C. (eds.) High Performance Computing. LNCS, vol. 13948, pp. 240–258. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32041-5_13
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328
Holland, J.H.: Genetic algorithms and adaptation. In: Selfridge, O.G., Rissland, E.L., Arbib, M.A. (eds.) Adaptive Control of Ill-Defined Systems. NATO Conference Series, vol. 16, pp. 317–333. Springer, Boston (1984). https://doi.org/10.1007/978-1-4684-8941-5_21
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 Proceedings of the International Conference on Neural Networks, ICNN 1995, vol. 4, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968
Pizzuti, C.: Hybrid quantum differential evolution. In: Proceedings of the 12th International Conference on Information, Intelligence, Systems & Applications (IISA), pp. 1–8 (2021). https://doi.org/10.1109/IISA52424.2021.9555505
Faílde, D., Viqueira, J.D., Juane, M.M., Gómez, A.: Using differential evolution to avoid local minima in variational quantum algorithms. arXiv preprint (2023). https://arxiv.org/abs/2303.12186
Miranda, F.T., Balbi, P.P., Costa, P.C.S.: Synthesis of quantum circuits with an island genetic algorithm. arXiv preprint (2021). https://arxiv.org/abs/2106.03115
Sünkel, L., Martyniuk, D., Mattern, D., Jung, J., Paschke, A.: GA4QCO: genetic algorithm for quantum circuit optimization. arXiv preprint (2023). https://arxiv.org/abs/2302.01303
Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006). https://doi.org/10.1109/MCI.2006.329691
Mertens, S.: The easiest hard problem: number partitioning (2003). https://arxiv.org/abs/cond-mat/0310317, cond-mat.dis-nn
Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992). ISSN 0377-2217. https://doi.org/10.1016/0377-2217(92)90138-Y. https://www.sciencedirect.com/science/article/pii/037722179290138Y
Georgioudakis, M., Plevris, V.: A comparative study of differential evolution variants in constrained structural optimization. Frontiers (2020). https://www.frontiersin.org/articles/10.3389/fbuil.2020.00102/full
Wang, S.-C.: Artificial Neural Network. In: Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science, vol. 743, pp. 81–100. Springer, Boston (2003). https://doi.org/10.1007/978-1-4615-0377-4_5
Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimedia Tools Appl. 80(5), 8091–8126 (2020). https://doi.org/10.1007/s11042-020-10139-6
Sünkel, L., Martyniuk, D., Mattern, D., Jung, J., Paschke, A.: GA4QCO: genetic algorithm for Quantum Circuit optimization, May 2023. https://arxiv.org/abs/2302.01303
Syswerda, G.: Simulated crossover in genetic algorithms. Found. Genet. Algorithms, 239-255 (1993). https://doi.org/10.1016/b978-0-08-094832-4.50021-0
Sharma, V., et al.: OpenQAOA – An SDK for QAOA (2022). https://arxiv.org/abs/2210.08695, quant-ph
Boothby, K., Bunyk, P., Raymond, J., Roy, A.: Next-generation topology of d-wave quantum processors (2020). https://arxiv.org/abs/2003.00133, quant-ph
Qiskit Contributors: Qiskit: an open-source framework for quantum computing (2023)
Fernández-Pendás, M., Combarro, E.F., Vallecorsa, S., Ranilla, J., Rúa, I.F.: A study of the performance of classical minimizers in the quantum approximate optimization algorithm. J. Comput. Appl. Math. 404, 113388 (2022). ISSN 0377-0427. https://doi.org/10.1016/j.cam.2021.113388. https://www.sciencedirect.com/science/article/pii/S0377042721000078
Kübler, J., Arrasmith, A., Cincio, L., Coles, P.: An adaptive optimizer for measurement-frugal variational algorithms. Quantum 4, 263 (2020). https://doi.org/10.22331/q-2020-05-11-263
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mazumder, A.R., Sen, A., Sen, U. (2024). Benchmarking Metaheuristic-Integrated QAOA Against Quantum Annealing. In: Arai, K. (eds) Intelligent Computing. SAI 2024. Lecture Notes in Networks and Systems, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-031-62269-4_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-62269-4_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62268-7
Online ISBN: 978-3-031-62269-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)