Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Benchmarking Metaheuristic-Integrated QAOA Against Quantum Annealing

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1018))

Included in the following conference series:

Abstract

The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising Noisy Intermediate Quantum (NISQ) Algorithms in solving combinatorial optimizations and displays potential over classical heuristic techniques. Unfortunately, QAOA’s performance depends on the choice of parameters and standard optimizers often fail to identify key parameters due to the complexity and mystery of these optimization functions. In this paper, we benchmark QAOA circuits modified with metaheuristic optimizers against classical and quantum heuristics to identify QAOA parameters. The experimental results reveal insights into the strengths and limitations of both Quantum Annealing and metaheuristic-integrated QAOA across different problem domains. The findings suggest that the hybrid approach can leverage classical optimization strategies to enhance the solution quality and convergence speed of QAOA, particularly for problems with rugged landscapes and limited quantum resources. Furthermore, the study provides guidelines for selecting the most appropriate approach based on the specific characteristics of the optimization problem at hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Glover, F.W., Kochenberger, G.A.: A tutorial on formulating QUBO models. CoRR, abs/1811.11538 (2018). http://arxiv.org/abs/1811.11538

  2. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 [quant-ph] (2014)

  3. Sturm, A.: Theory and implementation of the quantum approximate optimization algorithm: a comprehensible introduction and case study using Qiskit and IBM quantum computers. arXiv preprint (2023). https://arxiv.org/abs/2301.09535

  4. de Falco, D., Tamascelli, D.: An introduction to quantum annealing. RAIRO Theoret. Inform. Appl. 45(1), 99–116 (2011). https://doi.org/10.1051/ita/2011013

    Article  MathSciNet  Google Scholar 

  5. Pelofske, E., Bärtschi, A., Eidenbenz, S.: Quantum annealing vs. QAOA: 127 qubit higher-order Ising problems on NISQ computers. In: Bhatele, A., Hammond, J., Baboulin, M., Kruse, C. (eds.) High Performance Computing. LNCS, vol. 13948, pp. 240–258. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32041-5_13

  6. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  7. Holland, J.H.: Genetic algorithms and adaptation. In: Selfridge, O.G., Rissland, E.L., Arbib, M.A. (eds.) Adaptive Control of Ill-Defined Systems. NATO Conference Series, vol. 16, pp. 317–333. Springer, Boston (1984). https://doi.org/10.1007/978-1-4684-8941-5_21

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 Proceedings of the International Conference on Neural Networks, ICNN 1995, vol. 4, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

  9. Pizzuti, C.: Hybrid quantum differential evolution. In: Proceedings of the 12th International Conference on Information, Intelligence, Systems & Applications (IISA), pp. 1–8 (2021). https://doi.org/10.1109/IISA52424.2021.9555505

  10. Faílde, D., Viqueira, J.D., Juane, M.M., Gómez, A.: Using differential evolution to avoid local minima in variational quantum algorithms. arXiv preprint (2023). https://arxiv.org/abs/2303.12186

  11. Miranda, F.T., Balbi, P.P., Costa, P.C.S.: Synthesis of quantum circuits with an island genetic algorithm. arXiv preprint (2021). https://arxiv.org/abs/2106.03115

  12. Sünkel, L., Martyniuk, D., Mattern, D., Jung, J., Paschke, A.: GA4QCO: genetic algorithm for quantum circuit optimization. arXiv preprint (2023). https://arxiv.org/abs/2302.01303

  13. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006). https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  14. Mertens, S.: The easiest hard problem: number partitioning (2003). https://arxiv.org/abs/cond-mat/0310317, cond-mat.dis-nn

  15. Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992). ISSN 0377-2217. https://doi.org/10.1016/0377-2217(92)90138-Y. https://www.sciencedirect.com/science/article/pii/037722179290138Y

  16. Georgioudakis, M., Plevris, V.: A comparative study of differential evolution variants in constrained structural optimization. Frontiers (2020). https://www.frontiersin.org/articles/10.3389/fbuil.2020.00102/full

  17. Wang, S.-C.: Artificial Neural Network. In: Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science, vol. 743, pp. 81–100. Springer, Boston (2003). https://doi.org/10.1007/978-1-4615-0377-4_5

  18. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimedia Tools Appl. 80(5), 8091–8126 (2020). https://doi.org/10.1007/s11042-020-10139-6

    Article  Google Scholar 

  19. Sünkel, L., Martyniuk, D., Mattern, D., Jung, J., Paschke, A.: GA4QCO: genetic algorithm for Quantum Circuit optimization, May 2023. https://arxiv.org/abs/2302.01303

  20. Syswerda, G.: Simulated crossover in genetic algorithms. Found. Genet. Algorithms, 239-255 (1993). https://doi.org/10.1016/b978-0-08-094832-4.50021-0

  21. Sharma, V., et al.: OpenQAOA – An SDK for QAOA (2022). https://arxiv.org/abs/2210.08695, quant-ph

  22. Boothby, K., Bunyk, P., Raymond, J., Roy, A.: Next-generation topology of d-wave quantum processors (2020). https://arxiv.org/abs/2003.00133, quant-ph

  23. Qiskit Contributors: Qiskit: an open-source framework for quantum computing (2023)

    Google Scholar 

  24. Fernández-Pendás, M., Combarro, E.F., Vallecorsa, S., Ranilla, J., Rúa, I.F.: A study of the performance of classical minimizers in the quantum approximate optimization algorithm. J. Comput. Appl. Math. 404, 113388 (2022). ISSN 0377-0427. https://doi.org/10.1016/j.cam.2021.113388. https://www.sciencedirect.com/science/article/pii/S0377042721000078

  25. Kübler, J., Arrasmith, A., Cincio, L., Coles, P.: An adaptive optimizer for measurement-frugal variational algorithms. Quantum 4, 263 (2020). https://doi.org/10.22331/q-2020-05-11-263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arul Rhik Mazumder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazumder, A.R., Sen, A., Sen, U. (2024). Benchmarking Metaheuristic-Integrated QAOA Against Quantum Annealing. In: Arai, K. (eds) Intelligent Computing. SAI 2024. Lecture Notes in Networks and Systems, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-031-62269-4_42

Download citation

Publish with us

Policies and ethics