Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Data Augmentation Using BERT-Based Models for Aspect-Based Sentiment Analysis

  • Conference paper
  • First Online:
Web Engineering (ICWE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14629))

Included in the following conference series:

  • 615 Accesses

Abstract

In today’s digital world, there is an overwhelming amount of opinionated data on the Web. However, effectively analyzing all available data proves to be a resource-intensive endeavor, requiring substantial time and financial investments to curate high-quality training datasets. To mitigate such problems, this paper compares data augmentation models for aspect-based sentiment analysis. Specifically, we analyze the effect of several BERT-based data augmentation methods on the performance of the state-of-the-art HAABSA++ model. We consider the following data augmentation models: EDA-adjusted (baseline), BERT, Conditional-BERT, BERT\(_{\textrm{prepend}}\), and BERT\(_{\textrm{expand}}\). Our findings show that incorporating data augmentation techniques can significantly improve the out-of-sample accuracy of the HAABSA++ model. Specifically, our results highlight the effectiveness of BERT\(_{\textrm{prepend}}\) and BERT\(_{\textrm{expand}}\), increasing the test accuracy from 78.56% to 79.23% and from 82.62% to 84.47% for the SemEval 2015 and SemEval 2016 datasets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brauwers, G., Frasincar, F.: A survey on aspect-based sentiment classification. ACM Comput. Surv. 55(4), 65:1–65:37 (2023)

    Google Scholar 

  2. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019), pp. 4171–4186. ACL (2019)

    Google Scholar 

  3. Hoang, M., Bihorac, O.A., Rouces, J.: Aspect-based sentiment analysis using BERT. In: 22nd Nordic Conference on Computational Linguistics (NoDaLiDa 2019), pp. 187–196. Linköping University Electronic Press (2019)

    Google Scholar 

  4. Kudo, T., Richardson, J.: SentencePiece: a simple and language independent subword tokenizer and detokenizer for neural text processing. In: 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018), pp. 66–71. ACL (2018)

    Google Scholar 

  5. Kumar, V., Choudhary, A., Cho, E.: Data augmentation using pre-trained transformer models. arXiv preprint arXiv:2003.02245 (2020)

  6. Lee, T.Y., Bradlow, E.T.: Automated marketing research using online customer reviews. J. Mark. Res. 48(5), 881–894 (2011)

    Article  Google Scholar 

  7. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020), pp. 7871–7880. ACL (2020)

    Google Scholar 

  8. Liesting, T., Frasincar, F., Trusca, M.M.: Data augmentation in a hybrid approach for aspect-based sentiment analysis. In: 36th ACM/SIGAPP Symposium on Applied Computing (SAC 2021), pp. 828–835. ACM (2021)

    Google Scholar 

  9. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  10. Pantelidou, K., Chatzakou, D., Tsikrika, T., Vrochidis, S., Kompatsiaris, I.: Selective word substitution for contextualized data augmentation. In: Rosso, P., Basile, V., Martínez, R., Métais, E., Meziane, F. (eds.) NLDB 2022. LNCS, vol. 13286, pp. 508–516. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08473-7_47

    Chapter  Google Scholar 

  11. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), pp. 1532–1543. ACL (2014)

    Google Scholar 

  12. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: SemEval-2015 task 12: aspect based sentiment analysis. In: 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495. ACL (2015)

    Google Scholar 

  13. Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In: 10th International Workshop on Semantic Evaluation (SemEval 2016), pp. 19–30. ACL (2016)

    Google Scholar 

  14. Shani, C., Zarecki, J., Shahaf, D.: The lean data scientist: recent advances toward overcoming the data bottleneck. Commun. ACM 66(2), 92–102 (2023)

    Article  Google Scholar 

  15. Truşcǎ, M.M., Wassenberg, D., Frasincar, F., Dekker, R.: A hybrid approach for aspect-based sentiment analysis using deep contextual word embeddings and hierarchical attention. In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE 2020. LNCS, vol. 12128, pp. 365–380. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50578-3_25

    Chapter  Google Scholar 

  16. Wallaart, O., Frasincar, F.: A hybrid approach for aspect-based sentiment analysis using a lexicalized domain ontology and attentional neural models. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 363–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21348-0_24

    Chapter  Google Scholar 

  17. Wei, J.W., Zou, K.: EDA: easy data augmentation techniques for boosting performance on text classification tasks. In: 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP 2019), pp. 6381–6387. ACL (2019)

    Google Scholar 

  18. Wu, X., Lv, S., Zang, L., Han, J., Hu, S.: Conditional BERT contextual augmentation. In: Rodrigues, J.M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2019. LNCS, vol. 11539, pp. 84–95. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22747-0_7

    Chapter  Google Scholar 

  19. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  20. Zhang, Y., Du, J., Ma, X., Wen, H., Fortino, G.: Aspect-based sentiment analysis for user reviews. Cogn. Comput. 13(5), 1114–1127 (2021)

    Article  Google Scholar 

  21. Zheng, S., Xia, R.: Left-center-right separated neural network for aspect-based sentiment analysis with rotatory attention. arXiv preprint arXiv:1802.00892 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavius Frasincar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hollander, B., Frasincar, F., van der Knaap, F. (2024). Data Augmentation Using BERT-Based Models for Aspect-Based Sentiment Analysis. In: Stefanidis, K., Systä, K., Matera, M., Heil, S., Kondylakis, H., Quintarelli, E. (eds) Web Engineering. ICWE 2024. Lecture Notes in Computer Science, vol 14629. Springer, Cham. https://doi.org/10.1007/978-3-031-62362-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62362-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62361-5

  • Online ISBN: 978-3-031-62362-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics