Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

LLMental: Classification of Mental Disorders with Large Language Models

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2024)

Abstract

The increasing number of mental disorders is a severe problem in the modern world and can even lead to suicide if left untreated. In the age of digitalization, we move part of our lives to social media, where we share both the good and the bad moments. This allows for the early detection of mental disorders (such as depression, excessive stress, or social phobia) of which the user may even be unaware. We propose to modify large language models, such as PHI-2, Mistral, Flan-T5, or LLaMA 2, to classify mental disorders and to add appropriate layers. This gives a better prediction performance than zero-shot/few-shot for LLMs and classification by BERT-based models. Using such an architecture makes it possible to return a label rather than text, thus allowing the output of the LLM model to be freely modified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, T.B., et al.: Language models are few-shot learners (2020)

    Google Scholar 

  2. Demner-Fushman, D., Chapman, W.W., McDonald, C.J.: What can natural language processing do for clinical decision support? J. Biomed. Inform. 42(5), 760–772 (2009). https://doi.org/10.1016/j.jbi.2009.08.007, https://www.sciencedirect.com/science/article/pii/S1532046409001087. biomedical Natural Language Processing

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2019)

    Google Scholar 

  4. Garg, M., et al.: Cams: an annotated corpus for causal analysis of mental health issues in social media posts. arXiv preprint arXiv:2207.04674 (2022)

  5. Garg, M., Shahbandegan, A., Chadha, A., Mago, V.: An annotated dataset for explainable interpersonal risk factors of mental disturbance in social media posts (2023)

    Google Scholar 

  6. Gunasekar, S., et al.: Textbooks are all you need (2023)

    Google Scholar 

  7. Hu, E.J.,et al.: Lora: low-rank adaptation of large language models. CoRR abs/2106.09685 (2021). https://arxiv.org/abs/2106.09685

  8. Ji, S., Zhang, T., Ansari, L., Fu, J., Tiwari, P., Cambria, E.: Mentalbert: publicly available pretrained language models for mental healthcare (2021)

    Google Scholar 

  9. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 34(1), 50–70 (2022). https://doi.org/10.1109/tkde.2020.2981314

    Article  Google Scholar 

  10. Lin, L.Y., et al.: Association between social media use and depression among us young adults. Depress. Anxiety 33(4), 323–331 (2016)

    Article  Google Scholar 

  11. Mauriello, M.L., Lincoln, T., Hon, G., Simon, D., Jurafsky, D., Paredes, P.: Sad: a stress annotated dataset for recognizing everyday stressors in sms-like conversational systems. In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. CHI EA 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411763.3451799

  12. OpenAI: Gpt-4 technical report (2023)

    Google Scholar 

  13. Pestian, J.P., Nasrallah, H.A., Matykiewicz, P., Bennett, A.J., Leenaars, A.A.: Suicide note classification using natural language processing: A content analysis. Biomed. Inform. Insights 3 (2010). https://api.semanticscholar.org/CorpusID:7779743

  14. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  15. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer (2023)

    Google Scholar 

  16. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune bert for text classification? (2020)

    Google Scholar 

  17. Touvron, H., et al.: Llama: open and efficient foundation language models (2023)

    Google Scholar 

  18. Turcan, E., McKeown, K.: Dreaddit: a reddit dataset for stress analysis in social media. arXiv preprint arXiv:1911.00133 (2019)

  19. Vaswani, A., et al.: Attention is all you need (2023)

    Google Scholar 

  20. Wei, J., et al.: Finetuned language models are zero-shot learners (2022)

    Google Scholar 

  21. Windfuhr, K., Kapur, N.: Suicide and mental illness: a clinical review of 15 years findings from the UK national confidential inquiry into suicide. Br. Med. Bull. 100(1), 101–121 (2011)

    Article  Google Scholar 

  22. Yang, K., Zhang, T., Kuang, Z., Xie, Q., Ananiadou, S., Huang, J.: Mentallama: interpretable mental health analysis on social media with large language models (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Nowacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nowacki, A., Sitek, W., Rybiński, H. (2024). LLMental: Classification of Mental Disorders with Large Language Models. In: Appice, A., Azzag, H., Hacid, MS., Hadjali, A., Ras, Z. (eds) Foundations of Intelligent Systems. ISMIS 2024. Lecture Notes in Computer Science(), vol 14670. Springer, Cham. https://doi.org/10.1007/978-3-031-62700-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62700-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62699-9

  • Online ISBN: 978-3-031-62700-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics