Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detection of Depression Symptoms Through Unsupervised Learning

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2024)

Abstract

An increase in the decline of mental health in student populations has been observed since 2019. The objective of this study is to characterize the depression levels in university students from the Computer Science area of BUAP. The CES-D Scale was used and unsupervised algorithms K-Means, AGNES and DKM were applied for the grouping and characterization of the depression levels. The results show the symptoms that lead to a specific depression case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Loftness, B., et al.: Toward digital phenotypes of early childhood mental health via unsupervised and supervised machine learning (2023)

    Google Scholar 

  2. Shvetcov, A., et al.: Machine learning identifies a COVID-19-specific phenotype in university students using a mental health app. Internet Intervent. (2023)

    Google Scholar 

  3. Kundu, S., et al.: Mapping the individual human cortex using multidimensional MRI and unsupervised learning. Brain Commun. (2023)

    Google Scholar 

  4. Bhowmik, M., Al Bhuyain, N., Reza, M., Imtiaz Khan, N., Islam, M.: Neurophysiological feature based stress classification using unsupervised machine learning technique. In: Hossain, S., Hossain, M.S., Kaiser, M.S., Majumder, S.P., Ray, K. (eds.) Proceedings of International Conference on Fourth Industrial Revolution and Beyond 2021. LNNS, vol. 437, pp. 603–614. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-2445-3_42

    Chapter  Google Scholar 

  5. Alexander, N., Alexander, D., Barkhof, F., Denaxas, S.: Using unsupervised learning to identify clinical subtypes of Alzheimer’s disease in electronic health records. Stud. Health Technol. Inform. 499–503 (2020)

    Google Scholar 

  6. Srividya, M., Subramaniam, M., Natarajan, B.: Behavioral modeling for mental health using machine learning algorithms. J. Med. Syst. 88 (2018,4)

    Google Scholar 

  7. Lei, J.: An analytical model of college students’ mental health education based on the clustering algorithm. Math. Probl. Eng. 1–11 (2022)

    Google Scholar 

  8. Tang, Q., Zhao, Y., Wei, Y., Jiang, L.: Research on the mental health of college students based on fuzzy clustering algorithm. Secur. Commun. Netw. 1–8 (2021)

    Google Scholar 

  9. Alosaimi, N., Sherar, L., Griffiths, P., Pearson, N.: Clustering of diet, physical activity and sedentary behaviour and related physical and mental health outcomes: a systematic review. BMC Public Health 23 (2023)

    Google Scholar 

  10. James, G., Witten, D., Hastie, T., Tibshirani, R., Taylor, J.: An Introduction to Statistical Learning with Applications in Python. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38747-0

    Book  Google Scholar 

  11. Zollanvari, A.: Machine Learning with Python: Theory and Implementation. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33342-2

    Book  Google Scholar 

  12. Sustancias (MSD), S. Informe mundial sobre salud mental: Transformar la salud mental para todos. World Health Organization (2022). https://www.who.int/es/publications/i/item/9789240050860. Accessed 17 Jan 2024

  13. WHO Salud mental del adolescente. World Health Organization (2021). https://www.who.int/es/news-room/fact-sheets/detail/adolescent-mental-health. Accessed 17 Jan 2024

  14. González-Forteza, C., Jiménez-Tapia, J., Lira, L., Wagner, F.: Undefined. Salud Pública De México, pp. 292–299 (2008)

    Google Scholar 

  15. Vergara, K., Díaz-Cárdenas, S., Gonzalez, F.: Síntomas de depresión y ansiedad en jóvenes universitarios: prevalencia y factores relacionados. Rev. Clínica Med. Familia 14–22 (2014)

    Google Scholar 

  16. Cho, M., Vahid, K., Adya, S., Rastegari, M.: DKM: differentiable K-means clustering layer for neural network compression (2022)

    Google Scholar 

  17. Zheng, A., Casari, A.: Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O’Reilly Media (2018)

    Google Scholar 

  18. Dias Maia, C., Nobre, C., Gomes, M., Zárate, L.: Using machine learning to identify profiles of individuals with depression. In: Anais Do Symposium On Knowledge Discovery, Mining And Learning (KDMiLe), pp. 105–112 (2023)

    Google Scholar 

  19. Felice, M., Deroche, A., Trupkin, I., Chatterjee, P., Pollo-Cattaneo, M.: Predictive modeling for detection of depression using machine learning. In: Florez, H., Leon, M. (eds.) ICAI 2023. CCIS, vol. 1874, pp. 47–57. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46813-1_4

    Chapter  Google Scholar 

  20. Dangeti, P.: Statistics for Machine Learning, pp 313–314. Packt Publishing (2017)

    Google Scholar 

  21. Bonnin, R.: Machine Learning for Developers. Packt Publishing (2017)

    Google Scholar 

  22. Ramalho, L.: Fluent Python. O’Reilly Media (2022)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Benemerita Universidad Autonoma de Puebla. The present work was funded by the research project 00082 at VIEP-BUAP 2024 and by the Consejo Nacional de Humanidades de Ciencia y Tecnologia (CONAHCYT) with scholarship number 1126315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireya Tovar Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mendoza Gómez, O., Tovar Vidal, M., Contreras González, M. (2024). Detection of Depression Symptoms Through Unsupervised Learning. In: Mezura-Montes, E., Acosta-Mesa, H.G., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2024. Lecture Notes in Computer Science, vol 14755. Springer, Cham. https://doi.org/10.1007/978-3-031-62836-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62836-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62835-1

  • Online ISBN: 978-3-031-62836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics