Abstract
An increase in the decline of mental health in student populations has been observed since 2019. The objective of this study is to characterize the depression levels in university students from the Computer Science area of BUAP. The CES-D Scale was used and unsupervised algorithms K-Means, AGNES and DKM were applied for the grouping and characterization of the depression levels. The results show the symptoms that lead to a specific depression case.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Loftness, B., et al.: Toward digital phenotypes of early childhood mental health via unsupervised and supervised machine learning (2023)
Shvetcov, A., et al.: Machine learning identifies a COVID-19-specific phenotype in university students using a mental health app. Internet Intervent. (2023)
Kundu, S., et al.: Mapping the individual human cortex using multidimensional MRI and unsupervised learning. Brain Commun. (2023)
Bhowmik, M., Al Bhuyain, N., Reza, M., Imtiaz Khan, N., Islam, M.: Neurophysiological feature based stress classification using unsupervised machine learning technique. In: Hossain, S., Hossain, M.S., Kaiser, M.S., Majumder, S.P., Ray, K. (eds.) Proceedings of International Conference on Fourth Industrial Revolution and Beyond 2021. LNNS, vol. 437, pp. 603–614. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-2445-3_42
Alexander, N., Alexander, D., Barkhof, F., Denaxas, S.: Using unsupervised learning to identify clinical subtypes of Alzheimer’s disease in electronic health records. Stud. Health Technol. Inform. 499–503 (2020)
Srividya, M., Subramaniam, M., Natarajan, B.: Behavioral modeling for mental health using machine learning algorithms. J. Med. Syst. 88 (2018,4)
Lei, J.: An analytical model of college students’ mental health education based on the clustering algorithm. Math. Probl. Eng. 1–11 (2022)
Tang, Q., Zhao, Y., Wei, Y., Jiang, L.: Research on the mental health of college students based on fuzzy clustering algorithm. Secur. Commun. Netw. 1–8 (2021)
Alosaimi, N., Sherar, L., Griffiths, P., Pearson, N.: Clustering of diet, physical activity and sedentary behaviour and related physical and mental health outcomes: a systematic review. BMC Public Health 23 (2023)
James, G., Witten, D., Hastie, T., Tibshirani, R., Taylor, J.: An Introduction to Statistical Learning with Applications in Python. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38747-0
Zollanvari, A.: Machine Learning with Python: Theory and Implementation. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33342-2
Sustancias (MSD), S. Informe mundial sobre salud mental: Transformar la salud mental para todos. World Health Organization (2022). https://www.who.int/es/publications/i/item/9789240050860. Accessed 17 Jan 2024
WHO Salud mental del adolescente. World Health Organization (2021). https://www.who.int/es/news-room/fact-sheets/detail/adolescent-mental-health. Accessed 17 Jan 2024
González-Forteza, C., Jiménez-Tapia, J., Lira, L., Wagner, F.: Undefined. Salud Pública De México, pp. 292–299 (2008)
Vergara, K., Díaz-Cárdenas, S., Gonzalez, F.: Síntomas de depresión y ansiedad en jóvenes universitarios: prevalencia y factores relacionados. Rev. Clínica Med. Familia 14–22 (2014)
Cho, M., Vahid, K., Adya, S., Rastegari, M.: DKM: differentiable K-means clustering layer for neural network compression (2022)
Zheng, A., Casari, A.: Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O’Reilly Media (2018)
Dias Maia, C., Nobre, C., Gomes, M., Zárate, L.: Using machine learning to identify profiles of individuals with depression. In: Anais Do Symposium On Knowledge Discovery, Mining And Learning (KDMiLe), pp. 105–112 (2023)
Felice, M., Deroche, A., Trupkin, I., Chatterjee, P., Pollo-Cattaneo, M.: Predictive modeling for detection of depression using machine learning. In: Florez, H., Leon, M. (eds.) ICAI 2023. CCIS, vol. 1874, pp. 47–57. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46813-1_4
Dangeti, P.: Statistics for Machine Learning, pp 313–314. Packt Publishing (2017)
Bonnin, R.: Machine Learning for Developers. Packt Publishing (2017)
Ramalho, L.: Fluent Python. O’Reilly Media (2022)
Acknowledgments
The authors would like to thank Benemerita Universidad Autonoma de Puebla. The present work was funded by the research project 00082 at VIEP-BUAP 2024 and by the Consejo Nacional de Humanidades de Ciencia y Tecnologia (CONAHCYT) with scholarship number 1126315.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mendoza Gómez, O., Tovar Vidal, M., Contreras González, M. (2024). Detection of Depression Symptoms Through Unsupervised Learning. In: Mezura-Montes, E., Acosta-Mesa, H.G., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2024. Lecture Notes in Computer Science, vol 14755. Springer, Cham. https://doi.org/10.1007/978-3-031-62836-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-62836-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62835-1
Online ISBN: 978-3-031-62836-8
eBook Packages: Computer ScienceComputer Science (R0)