Abstract
This study introduces an innovative optimization technique rooted in hybridizing the Golden Sine Algorithm II and the Non - Monopolized Search algorithm tailored to address unconstrained problems. The core concept underlying Golden Sine Algorithm II hinges on leveraging the diminishing pattern of the sine function and the golden ratio to navigate the solution landscape effectively; meanwhile, the Non-Monopolized Search is employed to improve the exploitation as a local search mechanism. Our proposal is called improved Golden Sine Algorithm II with Non-Monopolized Local Search (GSII-LS). Notably, GSII-LS is designed to complement and enhance existing optimization methodologies, working in synergy with non-monopolizing search strategies. To assess its efficacy, GSII-LS is subjected to rigorous testing across 34 benchmark functions for unconstrained optimization. Comparative analysis against optimization algorithms is conducted using established evaluation criteria. Results demonstrate that GSII-LS consistently achieves superior convergence towards global optima across numerous benchmark functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Basset, M., Abdel-Fatah, L., Sangaiah, A.K.: Metaheuristic algorithms: a comprehensive review. In: Sangaiah, A.K., Sheng, M., Zhang, Z. (eds.) Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, pp. 185–231. Intelligent Data-Centric Systems, Academic Press (2018). https://doi.org/10.1016/B978-0-12-813314-9.00010-4
Abualigah, L., Al-qaness, M.A., Abd Elaziz, M., Ewees, A.A., Oliva, D., Cuong-Le, T.: The non-monopolize search (no): a novel single-based local search optimization algorithm. Neural Comput. Appl. 1–28 (2023)
Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021). https://doi.org/10.1016/j.cma.2020.113609
Bagdonavičius, V., Kruopis, J., Nikulin, M.S.: Non-parametric tests for complete data. ISTE/Wiley (2011)
Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)
Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)
Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)
Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003). https://doi.org/10.1162/106365603321828970
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)
Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007. https://www.sciencedirect.com/science/article/pii/S0965997813001853
Salem, S.A.: Boa: a novel optimization algorithm. In: 2012 International Conference on Engineering and Technology (ICET), pp. 1–5 (2012). https://doi.org/10.1109/ICEngTechnol.2012.6396156
Scheff, S.W.: Chapter 8 - nonparametric statistics. In: Scheff, S.W. (ed.) Fundamental Statistical Principles for the Neurobiologist, pp. 157–182. Academic Press (2016). https://doi.org/10.1016/B978-0-12-804753-8.00008-7. https://www.sciencedirect.com/science/article/pii/B9780128047538000087
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)
Tanyildizi, E.: A novel optimization method for solving constrained and unconstrained problems: modified golden sine algorithm. Turk. J. Electr. Eng. Comput. Sci. 26(6), 3287–3304 (2018)
Tanyildizi, E., Demir, G.: Golden sine algorithm: a novel math-inspired algorithm. Adv. Electr. Comput. Eng. 17(2) (2017)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
Wong, W., Ming, C.I.: A review on metaheuristic algorithms: recent trends, benchmarking and applications. In: 2019 7th International Conference on Smart Computing & Communications (ICSCC), pp. 1–5. IEEE (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Valdivia, A., Aranguren, I., Ramos-Frutos, J., Casas-Ordaz, A., Oliva, D., Zapotecas-Martínez, S. (2024). Improved Golden Sine II in Synergy with Non-monopolized Local Search Strategy. In: Sevaux, M., Olteanu, AL., Pardo, E.G., Sifaleras, A., Makboul, S. (eds) Metaheuristics. MIC 2024. Lecture Notes in Computer Science, vol 14754. Springer, Cham. https://doi.org/10.1007/978-3-031-62922-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-62922-8_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62921-1
Online ISBN: 978-3-031-62922-8
eBook Packages: Computer ScienceComputer Science (R0)