Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improved Golden Sine II in Synergy with Non-monopolized Local Search Strategy

  • Conference paper
  • First Online:
Metaheuristics (MIC 2024)

Abstract

This study introduces an innovative optimization technique rooted in hybridizing the Golden Sine Algorithm II and the Non - Monopolized Search algorithm tailored to address unconstrained problems. The core concept underlying Golden Sine Algorithm II hinges on leveraging the diminishing pattern of the sine function and the golden ratio to navigate the solution landscape effectively; meanwhile, the Non-Monopolized Search is employed to improve the exploitation as a local search mechanism. Our proposal is called improved Golden Sine Algorithm II with Non-Monopolized Local Search (GSII-LS). Notably, GSII-LS is designed to complement and enhance existing optimization methodologies, working in synergy with non-monopolizing search strategies. To assess its efficacy, GSII-LS is subjected to rigorous testing across 34 benchmark functions for unconstrained optimization. Comparative analysis against optimization algorithms is conducted using established evaluation criteria. Results demonstrate that GSII-LS consistently achieves superior convergence towards global optima across numerous benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Basset, M., Abdel-Fatah, L., Sangaiah, A.K.: Metaheuristic algorithms: a comprehensive review. In: Sangaiah, A.K., Sheng, M., Zhang, Z. (eds.) Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, pp. 185–231. Intelligent Data-Centric Systems, Academic Press (2018). https://doi.org/10.1016/B978-0-12-813314-9.00010-4

  2. Abualigah, L., Al-qaness, M.A., Abd Elaziz, M., Ewees, A.A., Oliva, D., Cuong-Le, T.: The non-monopolize search (no): a novel single-based local search optimization algorithm. Neural Comput. Appl. 1–28 (2023)

    Google Scholar 

  3. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021). https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  Google Scholar 

  4. Bagdonavičius, V., Kruopis, J., Nikulin, M.S.: Non-parametric tests for complete data. ISTE/Wiley (2011)

    Google Scholar 

  5. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  6. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  Google Scholar 

  7. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)

    Article  MathSciNet  Google Scholar 

  8. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003). https://doi.org/10.1162/106365603321828970

    Article  Google Scholar 

  9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  10. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  11. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007. https://www.sciencedirect.com/science/article/pii/S0965997813001853

  12. Salem, S.A.: Boa: a novel optimization algorithm. In: 2012 International Conference on Engineering and Technology (ICET), pp. 1–5 (2012). https://doi.org/10.1109/ICEngTechnol.2012.6396156

  13. Scheff, S.W.: Chapter 8 - nonparametric statistics. In: Scheff, S.W. (ed.) Fundamental Statistical Principles for the Neurobiologist, pp. 157–182. Academic Press (2016). https://doi.org/10.1016/B978-0-12-804753-8.00008-7. https://www.sciencedirect.com/science/article/pii/B9780128047538000087

  14. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  15. Tanyildizi, E.: A novel optimization method for solving constrained and unconstrained problems: modified golden sine algorithm. Turk. J. Electr. Eng. Comput. Sci. 26(6), 3287–3304 (2018)

    Google Scholar 

  16. Tanyildizi, E., Demir, G.: Golden sine algorithm: a novel math-inspired algorithm. Adv. Electr. Comput. Eng. 17(2) (2017)

    Google Scholar 

  17. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  18. Wong, W., Ming, C.I.: A review on metaheuristic algorithms: recent trends, benchmarking and applications. In: 2019 7th International Conference on Smart Computing & Communications (ICSCC), pp. 1–5. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valdivia, A., Aranguren, I., Ramos-Frutos, J., Casas-Ordaz, A., Oliva, D., Zapotecas-Martínez, S. (2024). Improved Golden Sine II in Synergy with Non-monopolized Local Search Strategy. In: Sevaux, M., Olteanu, AL., Pardo, E.G., Sifaleras, A., Makboul, S. (eds) Metaheuristics. MIC 2024. Lecture Notes in Computer Science, vol 14754. Springer, Cham. https://doi.org/10.1007/978-3-031-62922-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62922-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62921-1

  • Online ISBN: 978-3-031-62922-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics