Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Complexity Framework for Forbidden Subgraphs IV: The Steiner Forest Problem

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2024)

Abstract

We study Steiner Forest on H-subgraph-free graphs, that is, graphs that do not contain some fixed graph H as a (not necessarily induced) subgraph. We are motivated by a recent framework that completely characterizes the complexity of many problems on H-subgraph-free graphs. However, in contrast to, e.g. the related Steiner Tree problem, Steiner Forest falls outside this framework. Hence, the complexity of Steiner Forest on H-subgraph-free graphs remained tantalizingly open. We make significant progress on this open problem: our main results are four novel polynomial-time algorithms for different excluded graphs H that are central to further understand its complexity. Along the way, we study the complexity of Steiner Forest for graphs with a small c-deletion set, that is, a small set X of vertices such that each component of \(G-X\) has size at most c. Using this parameter, we give two algorithms that we later employ as subroutines. First, we present a significantly faster parameterized algorithm for Steiner Forest parameterized by |X| when \(c=1\) (i.e. the vertex cover number), which by a recent result is best possible under ETH [Feldmann and Lampis, arXiv 2024]. Second, we prove that Steiner Forest is polynomial-time solvable for graphs with a 2-deletion set of size at most 2. The latter result is tight, as the problem is NP-complete for graphs with a 3-deletion set of size 2.

J.J. Oostveen is supported by the NWO grant OCENW.KLEIN.114 (PACAN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseev, V.E., Korobitsyn, D.V.: Complexity of some problems on hereditary graph classes. Diskret. Mat. 4, 34–40 (1992)

    MathSciNet  Google Scholar 

  2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12, 308–340 (1991)

    Article  MathSciNet  Google Scholar 

  3. Barefoot, C.A., Entringer, R., Swart, H.: Vulnerability in graphs - a comparative survey. J. Comb. Math. Comb. Comput. 1, 13–22 (1987)

    MathSciNet  Google Scholar 

  4. Bateni, M., Hajiaghayi, M.T., Marx, D.: Approximation schemes for steiner forest on planar graphs and graphs of bounded treewidth. J. ACM 58, 21:1–21:37 (2011)

    Google Scholar 

  5. Bodlaender, H.L., Brettell, N., Johnson, M., Paesani, G., Paulusma, D., van Leeuwen, E.J.: Steiner trees for hereditary graph classes: a treewidth perspective. Theoret. Comput. Sci. 867, 30–39 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bodlaender, H.L., et al.: Subgraph Isomorphism on graph classes that exclude a substructure. Algorithmica 82, 3566–3587 (2020)

    Article  MathSciNet  Google Scholar 

  7. Bulteau, L., Dabrowski, K.K., Köhler, N., Ordyniak, S., Paulusma, D.: An algorithmic framework for locally constrained homomorphisms. In: Bekos, M.A., Kaufmann, M. (eds.) WG 2022. LNCS, vol. 13453, pp. 114–128. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15914-5_9

    Chapter  Google Scholar 

  8. Drange, P.G., Dregi, M.S., van ’t Hof, P.: On the computational complexity of vertex integrity and component order connectivity. Algorithmica 76, 1181–1202 (2016)

    Google Scholar 

  9. Dvorák, P., Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Solving integer linear programs with a small number of global variables and constraints. In: Proceedings of IJCAI 2017, pp. 607–613 (2017)

    Google Scholar 

  10. Feldmann, A.E., Lampis, M.: Parameterized algorithms for steiner forest in bounded width graphs. In: Proceedings of ICALP 2024. LIPIcs (2024, to appear)

    Google Scholar 

  11. Fujita, S., Furuya, M.: Safe number and integrity of graphs. Discret. Appl. Math. 247, 398–406 (2018)

    Article  MathSciNet  Google Scholar 

  12. Fujita, S., MacGillivray, G., Sakuma, T.: Safe set problem on graphs. Discret. Appl. Math. 215, 106–111 (2016)

    Article  MathSciNet  Google Scholar 

  13. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap between treedepth and vertex cover through vertex integrity. Theoret. Comput. Sci. 918, 60–76 (2022)

    Article  MathSciNet  Google Scholar 

  14. Golovach, P.A., Paulusma, D.: List coloring in the absence of two subgraphs. Discret. Appl. Math. 166, 123–130 (2014)

    Article  MathSciNet  Google Scholar 

  15. Johnson, M., Martin, B., Oostveen, J.J., Pandey, S., Paulusma, D., Smith, S., van Leeuwen, E.J.: Complexity framework for forbidden subgraphs I: the framework. CoRR abs/2211.12887 (2022)

    Google Scholar 

  16. Johnson, M., Martin, B., Pandey, S., Paulusma, D., Smith, S., van Leeuwen, E.J.: Edge multiway cut and node multiway cut are hard for planar subcubic graphs. In: Proceedings of SWAT 2024. LIPIcs, vol. 294, pp. 29:1–29:17 (2024)

    Google Scholar 

  17. Johnson, M., Martin, B., Pandey, S., Paulusma, D., Smith, S., van Leeuwen, E.J.: Complexity framework for forbidden subgraphs III: when problems are polynomial on subcubic graphs. In: Proceedings of MFCS 2023, LIPIcs, vol. 272, pp. 57:1–57:15 (2023)

    Google Scholar 

  18. Kamiński, M.: Max-cut and containment relations in graphs. Theoret. Comput. Sci. 438, 89–95 (2012)

    Article  MathSciNet  Google Scholar 

  19. Martin, B., Pandey, S., Paulusma, D., Siggers, M., Smith, S., van Leeuwen, E.J.: Complexity framework for forbidden subgraphs II: when hardness is not preserved under edge subdivision. CoRR abs/2211.14214 (2022)

    Google Scholar 

Download references

Acknowledgments

We thank Daniel Lokshtanov for pointing out a possible relationship between Steiner Forest and CSP, as discussed in Sect. 5. We also thank the anonymous reviewers of earlier versions of this paper for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Jan van Leeuwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bodlaender, H.L. et al. (2024). Complexity Framework for Forbidden Subgraphs IV: The Steiner Forest Problem. In: Rescigno, A.A., Vaccaro, U. (eds) Combinatorial Algorithms. IWOCA 2024. Lecture Notes in Computer Science, vol 14764. Springer, Cham. https://doi.org/10.1007/978-3-031-63021-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63021-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63020-0

  • Online ISBN: 978-3-031-63021-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics