Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving Online Bin Covering with Little Advice

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2024)

Abstract

The online bin covering problem is: given an input sequence of items find a placement of the items in the maximum number of bins such that the sum of the items’ sizes in each bin is at least 1. Boyar et al. [3] present a strategy that with \(O(\log \log n)\) bits of advice, where n is the length of the input sequence, achieves a competitive ratio of \(8/15\approx 0.5333\ldots \). We show that with a strengthened analysis and some minor improvements, the same strategy achieves the significantly improved competitive ratio of \(135/242\approx 0.5578\ldots \), still using \(O(\log \log n)\) bits of advice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Assmann, S.A., Johnson, D.S., Kleitman, D.J., Leung, J.Y.T.: On a dual version of the one-dimensional bin packing problem. J. Algor. 5(4), 502–525 (1984)

    Article  MathSciNet  Google Scholar 

  2. Assmann, S.F.: Problems in discrete applied mathematics. PhD thesis, Massachusetts Institute of Technology (1983)

    Google Scholar 

  3. Boyar, J., Favrholdt, L.M., Kamali, S., Larsen, K.S.: Online bin covering with advice. Algorithmica 83(3), 795–821 (2021)

    Article  MathSciNet  Google Scholar 

  4. Brodnik, A., Nilsson, B.J., Vujovic, G.: Online bin covering with exact advice. Informatica Int. J. Comput. Inf. (2024)

    Google Scholar 

  5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: Online algorithms with advice: the tape model. Inf. Comput. 254, 59–83 (2017)

    Article  MathSciNet  Google Scholar 

  6. Csirik, J., Totik, V.: Online algorithms for a dual version of bin packing. Disc. Appl. Math. 21(2), 163–167 (1988)

    Article  MathSciNet  Google Scholar 

  7. Komm, D.: An Introduction to Online Computation—Determinism, Randomization, Advice. Springer, Texts in Theoretical Computer Science (2016). ISBN 978-3-319-42747-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt J. Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brodnik, A., Nilsson, B.J., Vujović, G. (2024). Improving Online Bin Covering with Little Advice. In: Rescigno, A.A., Vaccaro, U. (eds) Combinatorial Algorithms. IWOCA 2024. Lecture Notes in Computer Science, vol 14764. Springer, Cham. https://doi.org/10.1007/978-3-031-63021-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63021-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63020-0

  • Online ISBN: 978-3-031-63021-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics