Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A MARL-Based Approach for Easing MAS Organization Engineering

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2024)

Abstract

Multi-Agent Systems (MAS) have been successfully applied in industry for their ability to address complex, distributed problems, especially in IoT-based systems. Their efficiency in achieving given objectives and meeting design requirements is strongly dependent on the MAS organization during the engineering process of an application-specific MAS. To design a MAS that can achieve given goals, available methods rely on the designer’s knowledge of the deployment environment. However, high complexity and low readability in some deployment environments make the application of these methods to be costly or raise safety concerns. In order to ease the MAS organization design regarding those concerns, we introduce an original Assisted MAS Organization Engineering Approach (AOMEA). AOMEA relies on combining a Multi-Agent Reinforcement Learning (MARL) process with an organizational model to suggest relevant organizational specifications to help in MAS engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Additional explanation and the examples discussed using PRAHOM PettingZoo wrapper are available at https://github.com/julien6/omarl_experiments?tab=readme-ov-file#tutorial-predator-prey-with-communication.

References

  1. Beynier, A., et al.: DEC-MDP/POMDP, chap. 9, pp. 277–318. John Wiley & Sons, Ltd. (2013). https://doi.org/10.1002/9781118557426.ch9, https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118557426.ch9

  2. Cernuzzi, L., Molesini, A., Omicini, A.: The Gaia methodology process. In: Cossentino, M., Hilaire, V., Molesini, A., Seidita, V. (eds.) Handbook on Agent-Oriented Design Processes, pp. 141–172. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-39975-6_6

    Chapter  Google Scholar 

  3. Yu, C., et al.: The surprising effectiveness of PPO in cooperative, multi-agent games (2022)

    Google Scholar 

  4. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J. (eds.) AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24620-6_15

    Chapter  Google Scholar 

  5. Group, T.C.W.: TTCP cage challenge 3 (2022). https://github.com/cage-challenge/cage-challenge-3

  6. Hubner, J.F., et al.: Developing organised multiagent systems using the moise+ model: programming issues at the system and agent levels. Int. J. Agent-Oriented Software Eng. 370 (2007). https://doi.org/10.1504/ijaose.2007.016266

  7. Jamont, J.P., Occello, M.: Meeting the challenges of decentralized embedded applications using multi-agent systems. Int. J. Agent Oriented Software Eng. 5(1), 22–67 (2015). https://doi.org/10.1504/IJAOSE.2015.078435, https://hal.univ-grenoble-alpes.fr/hal-01265071

  8. Kazhdan, D., Shams, Z., Lio, P.: MARLeME: a multi-agent reinforcement learning model extraction library. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020) https://doi.org/10.1109/IJCNN48605.2020.9207564

  9. Keogh, K., Sonenberg, L.: Designing multi-agent system organisations for flexible runtime behaviour. Appl. Sci. 10(15) (2020). https://www.mdpi.com/2076-3417/10/15/5335

  10. Kott, A.: Autonomous Intelligent Cyber Defense Agent (AICA): A Comprehensive Guide, vol. 87. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-29269-9

    Book  Google Scholar 

  11. Bakliwal, K., et al.: A multi agent system architecture to implement collaborative learning for social industrial assets. IFAC-PapersOnLine 51(11), 1237–1242 (2018).https://doi.org/10.1016/j.ifacol.2018.08.421, https://www.sciencedirect.com/science/article/pii/S2405896318315477, iFAC Symp. on Information Control Problems in Manufacturing INCOM

  12. Lowe, R., et al.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  13. Mefteh, W., Migeon, F., Gleizes, M.-P., Gargouri, F.: ADELFE 3.0 design, building adaptive multi agent systems based on simulation a case study. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9329, pp. 19–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24069-5_2

    Chapter  Google Scholar 

  14. Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralized POMDPs. Springer Briefs in Intelligent Systems. Springer, Cham (2016).https://doi.org/10.1007/978-3-319-28929-8,

  15. Picard, G., Hübner, J.F., Boissier, O., Gleizes, M.P.: Réorganisation et auto-organisation dans les systèmes multi-agents. In: Journées Francophones sur les Systèmes Multi-Agents (JFSMA’09), p. 89 (2009)

    Google Scholar 

  16. Răileanu, S., Borangiu, T.: A review of multi-agent systems used in industrial applications. In: Borangiu, T., Trentesaux, D., Leitão, P. (eds.) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. pp. 3–22. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24291-5_1

  17. Schön, S., et al.: Integration of multi-fidelity models with agent-based simulation for system of systems. In: AIAA Aviation 2021 Forum, p. 2996 (2021)

    Google Scholar 

  18. Sims, M., Corkill, D., Lesser, V.: Automated organization design for multi-agent systems. Auton. Agents Multi-agent Syst. 16(2), 151–185 (2008). https://doi.org/10.1007/s10458-007-9023-8

    Article  Google Scholar 

  19. Terry, J., et al.: PettingZoo: gym for multi-agent reinforcement learning. In: Advances in Neural Information Processing Systems, vol. 34, pp. 15032–15043 (2021)

    Google Scholar 

  20. Tonghan Wang et. al.: Roma: multi-agent reinforcement learning with emergent roles (2020)

    Google Scholar 

  21. Tošić, P.T., Vilalta, R.: A unified framework for reinforcement learning, co-learning and meta-learning how to coordinate in collaborative multi-agent systems. Procedia Comput. Sci. 1(1), 2217–2226 (2010). https://doi.org/10.1016/j.procs.2010.04.248, https://www.sciencedirect.com/science/article/pii/S1877050910002498, iCCS 2010

  22. Wooldridge, M., et al.: The Gaia methodology for agent-oriented analysis and design. Auton. Agent. Multi-Agent Syst. 3, 285–312 (2000)

    Article  Google Scholar 

  23. Zheng, L., et al.: MAgent: a many-agent reinforcement learning platform for artificial collective intelligence. In: Proceedings of the AAAI Conference on Artificial Intelligence 32(1) (2018). https://doi.org/10.1609/aaai.v32i1.11371, https://ojs.aaai.org/index.php/AAAI/article/view/11371

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Soulé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soulé, J., Jamont, JP., Occello, M., Traonouez, LM., Théron, P. (2024). A MARL-Based Approach for Easing MAS Organization Engineering. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 714. Springer, Cham. https://doi.org/10.1007/978-3-031-63223-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63223-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63222-8

  • Online ISBN: 978-3-031-63223-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics