Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Innovative Methodology for Revealing Home Appliances’ Consumption Patterns to Transform Energy Management and Maintenance Strategies

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops (AIAI 2024)

Abstract

Developing efficient techniques for energy optimization and conservation requires a thorough understanding of the patterns of energy usage among different home appliances. This study looks into the energy usage patterns of several household appliances and assesses how well machine learning methods classify these patterns. Appliances are categorized into three groups: constantly on devices, program-based on-demand devices, and non-program-based on-demand devices. Key statistical features such as periodograms, mean, and standard deviation are extracted for machine learning classification, employing DenseNet 1D, XGBoost, LightGBM, SVM, KNN, and Random Forest. The findings show DenseNet and LightGBM performing exceptionally well, with nearly 98% accuracy in classifying constantly-on and program-based devices, indicating their potential in optimizing energy usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dimara, A., et al.: Self-healing of semantically interoperable smart and prescriptive edge devices in IoT. Appl. Sci. 12(22), 11650 (2022)

    Article  Google Scholar 

  2. Tzitziou, G., et al.: Is the residential sector ready for prescriptive maintenance? A short analysis. In: 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC). IEEE (2023)

    Google Scholar 

  3. Papaioannou, A., et al.: Self-protection of IoT gateways against breakdowns and failures enabling automated sensing and control. In: Maglogiannis, I., Iliadis, L., Papaleonidas, A., Chochliouros, I. (eds.) AIAI 2023. IFIP International Conference on Artificial Intelligence Applications and Innovations, vol. 677, pp. 231–241. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34171-7_18

  4. Bhattacharjee, S., Kumar, A., RoyChowdhury, J.: Appliance classification using energy disaggregation in smart homes. In: 2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), pp. 1–6. IEEE, April 2014

    Google Scholar 

  5. Solatidehkordi, Z., Ramesh, J., Al-Ali, A.R., Osman, A., Shaaban, M.: An IoT deep learning-based home appliances management and classification system. Energy Rep. 9, 503–509 (2023)

    Article  Google Scholar 

  6. Zufferey, D., Gisler, C., Abou Khaled, O., Hennebert, J.: Machine learning approaches for electric appliance classification. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), pp. 740–745. IEEE, July 2012

    Google Scholar 

  7. Klemenjak, C., et al.: A synthetic energy dataset for non-intrusive load monitoring in households. Sci. Data 7(1), 108 (2020)

    Article  Google Scholar 

  8. Castangia, M., et al.: Anomaly detection on household appliances based on variational autoencoders. Sustain. Energy Grids Netw. 32, 100823 (2022)

    Article  Google Scholar 

  9. Stefanopoulou, A., et al.: Ensuring reliability in smart building IoT operations through real-time holistic data treatment. In: Maglogiannis, I., Iliadis, L., Papaleonidas, A., Chochliouros, I. (eds.) AIAI 2023. IFIP International Conference on Artificial Intelligence Applications and Innovations, vol. 677, pp. 207–218. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34171-7_16

  10. Bartlett, M.S.: Periodogram analysis and continuous spectra. Biometrika 37(1/2), 1–16 (1950)

    Article  MathSciNet  Google Scholar 

  11. Sundararajan, D.: The Discrete Fourier Transform: Theory, Algorithms and Applications. World Scientific, Singapore (2001)

    Book  Google Scholar 

  12. Beloborodov, A.M., Stern, B.E., Svensson, R.: Power density spectra of gamma-ray bursts. Astrophys. J. 535(1), 158 (2000)

    Article  Google Scholar 

  13. Yeh, C.-C.M., et al.: Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE (2016)

    Google Scholar 

  14. Iandola, F., et al.: DenseNet: implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014)

  15. Chen, T., et al.: XGBoost: extreme gradient boosting. R package version 0.4-2 1.4, pp. 1–4 (2015)

    Google Scholar 

  16. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Chawla, N.V., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by SMART2B https://smart2b-project.eu/ project funded by the European Union’s Horizon 2020 under Grant Agreement 101023666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asimina Dimara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papaioannou, A. et al. (2024). An Innovative Methodology for Revealing Home Appliances’ Consumption Patterns to Transform Energy Management and Maintenance Strategies. In: Maglogiannis, I., Iliadis, L., Karydis, I., Papaleonidas, A., Chochliouros, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-031-63227-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63227-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63226-6

  • Online ISBN: 978-3-031-63227-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics