Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tourist Flow Projection in Response to Weather Variability for Sustainable Tourism and Management

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops (AIAI 2024)

Abstract

To implement strategies to reduce environmental impact while optimizing infrastructure and enhancing the overall visitor experience, there is a need to analyze and comprehend the patterns of tourist flow. In addition, weather variability can significantly impact the number of tourists visiting a destination. Thus, when analyzing tourist flows, it is essential to take account of weather variations. In this paper, a thorough analysis of the dynamics of monthly tourist flows per day and year is investigated, by using advanced machine learning techniques, specifically BIRCH. This approach allows the discerning of distinctive patterns and clusters within the tourist data. Furthermore, LightGBM is used with the above tourist data, to project the expected tourist flow based on date-time and weather fluctuations. The findings reveal how weather fluctuations influence tourist flow, providing insights for sustainable tourism practices and resilient management strategies, in response to weather variability, while showcasing an accuracy of 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stainton, H.: 13 Social Impacts of Tourism + Explanations + Examples - Tourism Teacher. Tourism Teacher. tourismteacher.com/social-impacts-of-tourism

  2. UN Report Underscores Importance of Tourism for Economic Recovery in 2022. www.unwto.org/news/un-report-underscores-importance-of-tourism-for-economic-recovery-in-2022

  3. Gidebo, H.B.: Factors determining international tourist flow to tourism destinations: a systematic review. J. Hospitality Manage. Tourism 12(1), 9–17 (2021)

    Article  Google Scholar 

  4. Dimara, A., et al.: MLP for spatio-temporal traffic volume forecasting. In: 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). IEEE (2021)

    Google Scholar 

  5. Martín, J.M.M., et al.: Analysis of tourism seasonality as a factor limiting the sustainable development of rural areas. J. Hospitality Tourism Res. 44(1), 45–75 (2019)

    Article  Google Scholar 

  6. Butler, R.: Seasonality in tourism: issues and implications. Revue De Tourisme 53(3), 18–24 (1998)

    Google Scholar 

  7. Bi, J.-W., et al.: Daily tourism volume forecasting for tourist attractions. Ann. Tourism Res. 83, 102923 (2020)

    Article  Google Scholar 

  8. Álvarez-Díaz, M., Nadal, J.R.: Forecasting British tourist arrivals in the Balearic Islands using meteorological variables. Tourism Econ. 16(1), 153–68 (2010)

    Article  Google Scholar 

  9. Rising Global Temperatures Are Already Affecting the Tourism Industry - Here’s How. World Economic Forum. www.weforum.org/agenda/2023/08/temperatures-tourism-climate-impact

  10. Denstadli, J.M., et al.: Tourist perceptions of summer weather in Scandinavia. Ann. Tourism Res. 38(3), 920–40 (2011). https://doi.org/10.1016/j.annals.2011.01.005

    Article  Google Scholar 

  11. Gößling, S., et al.: Consumer behaviour and demand response of tourists to climate change. Ann. Tourism Res. 39(1), 36–58 (2012). https://doi.org/10.1016/j.annals.2011.11.002

    Article  Google Scholar 

  12. Li, K., et al.: Forecasting of short-term daily tourist flow based on seasonal clustering method and PSO-LSSVM. ISPRS Int. J. Geo-Inf. 9(11), 676 (2020). https://doi.org/10.3390/ijgi9110676

    Article  Google Scholar 

  13. Li, W., et al.: Intelligence in tourist destinations management: improved attention-based gated recurrent unit model for accurate tourist flow forecasting. Sustainability 12(4), 1390 (2020). https://doi.org/10.3390/su12041390

    Article  Google Scholar 

  14. Bi, J.-W., et al.: Daily tourism volume forecasting for tourist attractions. Ann. Tourism Res. 83, 102923 (2020). https://doi.org/10.1016/j.annals.2020.102923

    Article  Google Scholar 

  15. Chen, R., et al.: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm. Appl. Soft Comput. 26, 435–43 (2015). https://doi.org/10.1016/j.asoc.2014.10.022

    Article  Google Scholar 

  16. Yoopetch, C., et al.: Tourism forecasting using the Delphi method and implications for sustainable tourism development. Sustainability 15(1), 126 (2022). https://doi.org/10.3390/su15010126

    Article  Google Scholar 

  17. Zhang, T., et al.: BIRCH. Sigmod Rec. 25(2), 103–14 (1996). https://doi.org/10.1145/235968.233324

    Article  Google Scholar 

  18. Dimara, A., et al.: Fusing Birch with G. Boosting for improving temporal traffic congestion tailored to port gates: case study in Patras, Greece. In: 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), Charlotte, NC, USA, pp. 1–5 (2020). https://doi.org/10.1109/HONET50430.2020.9322662.

  19. Kyrtsoglou, A., et al.: Missing data imputation and meta-analysis on correlation of spatio-temporal weather series data. In: 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE (2021)

    Google Scholar 

  20. Stefanopoulou, A., et al.: Ensuring reliability in smart building IoT operations through real-time holistic data treatment. In: Maglogiannis, I., Iliadis, L., Papaleonidas, A., Chochliouros, I. (eds.) IFIP International Conference on Artificial Intelligence Applications and Innovations. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34171-7_16

  21. Hellenic Statistical Authority. https://www.statistics.gr/en/statistics/ind

  22. De S. Sirisuriya, S.C.M.: Importance of web scraping as a data source for machine learning algorithms-review. In: 2023 IEEE 17th International Conference on Industrial and Information Systems (ICIIS). IEEE (2023)

    Google Scholar 

  23. Rahman, Md.M., Nower, N.: Attention based deep hybrid networks for traffic flow prediction using Google maps data. In: Proceedings of the 2023 8th International Conference on Machine Learning Technologies (2023)

    Google Scholar 

  24. Sundqvist, M., Chiquet, J., Rigaill, G.: Adjusting the adjusted Rand Index–a multinomial story. arXiv preprint arXiv:2011.08708 (2020)

  25. Alkasassbeh, M., Abbadi, M., Al-Bustanji, A.: LightGBM Algorithm for Malware Detection (2020). https://doi.org/10.1007/978-3-030-52243-8_28

Download references

Acknowledgments

This work is partially supported by the TOURAL project, funded by the EU H2020 under Grant Agreement No. 101132489.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asimina Dimara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tzitziou, G. et al. (2024). Tourist Flow Projection in Response to Weather Variability for Sustainable Tourism and Management. In: Maglogiannis, I., Iliadis, L., Karydis, I., Papaleonidas, A., Chochliouros, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-031-63227-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63227-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63226-6

  • Online ISBN: 978-3-031-63227-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics