Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Representative Framework for Implementing Quantum Finite Automata on Real Devices

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2024)

Abstract

We present a framework for the implementation of quantum finite automata algorithms designed for the language \( \mathtt {MOD_p} = \{ a^{i \cdot p} \mid i \ge 0 \} \) on gate-based quantum computers. First, we compile the known theoretical results from the literature to reduce the number of CNOT gates. Second, we demonstrate techniques for modifying the algorithms based on the basis gates of available quantum hardware in order to reduce circuit depth. Lastly, we explore how the number of CNOT gates may be reduced further if the topology of the qubits is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As the control operators are fired when a qubit is in state \(\left| 1\right\rangle \), we use several NOT (X) gates between controlled rotations. For example, we apply NOT gates on the first \(\log d\) qubits before and after the controlled \(R_{k_1}\) operator, and, in this way, we guarantee that \(R_{k_1}\) is fired only if the first \(\log d\) qubits are in \( \left| 0 \cdots 0\right\rangle \). If we follow the order of indices on the circuit, then there will be several NOT gates. But, if we follow an order based on Gray code, then it will be enough to use only a single NOT gate between the controlled rotations.

References

  1. Getting started with native gates. https://ionq.com/docs/getting-started-with-native-gates

  2. IBMQ backends. https://quantum-computing.ibm.com/services/resources

  3. Transpiler. https://qiskit.org/documentation/apidoc/transpiler.html

  4. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. Lobachevskii J. Math. 37(6), 670–682 (2016)

    Article  MathSciNet  Google Scholar 

  5. Ablayev, F., Ablayev, M., Vasiliev, A., Ziatdinov, M.: Quantum fingerprinting and quantum hashing. Computational and cryptographical aspects. Balt. J. Mod. Comput. 4(4), 860 (2016)

    Google Scholar 

  6. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: FOCS 1998, pp. 332–341. IEEE (1998)

    Google Scholar 

  7. Ambainis, A., Nahimovs, N.: Improved constructions of quantum automata. Theoret. Comput. Sci. 410(20), 1916–1922 (2009)

    Article  MathSciNet  Google Scholar 

  8. Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. In: Éric Pin, J. (ed.) Handbook of Automata Theory, vol. 2, chap. 39, pp. 1457–1493 (2021)

    Google Scholar 

  9. Bakó, B., Glos, A., Salehi, Ö., Zimborás, Z.: Near-optimal circuit design for variational quantum optimization. arXiv preprint arXiv:2209.03386 (2022)

  10. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  Google Scholar 

  11. Birkan, U., Salehi, Ö., Olejar, V., Nurlu, C., Yakaryılmaz, A.: Implementing quantum finite automata algorithms on noisy devices. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 3–16. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_1

    Chapter  Google Scholar 

  12. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  Google Scholar 

  13. Kālis, M.: Kvantu Algoritmu Realizācija Fiziskā Kvantu Datorā. Master’s thesis, University of Latvia (2018)

    Google Scholar 

  14. Khadiev, K., Khadieva, A.: Reordering method and hierarchies for quantum and classical ordered binary decision diagrams. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 162–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58747-9_16

    Chapter  Google Scholar 

  15. Khadiev, K., Khadieva, A.: Quantum online streaming algorithms with logarithmic memory. Int. J. Theor. Phys. 60, 608–616 (2021)

    Article  MathSciNet  Google Scholar 

  16. Khadiev, K., Khadieva, A.: Quantum and classical log-bounded automata for the online disjointness problem. Mathematics 10(1), 143 (2022)

    Article  Google Scholar 

  17. Khadiev, K., Khadieva, A., Knop, A.: Exponential separation between quantum and classical ordered binary decision diagrams, reordering method and hierarchies. Nat. Comput. 22, 723–736 (2022)

    Article  MathSciNet  Google Scholar 

  18. Maldonado, T.J., Flick, J., Krastanov, S., Galda, A.: Error rate reduction of single-qubit gates via noise-aware decomposition into native gates. Sci. Rep. 12(1), 6379 (2022)

    Article  Google Scholar 

  19. McKay, D.C., Wood, C.J., Sheldon, S., Chow, J.M., Gambetta, J.M.: Efficient \(Z\) gates for quantum computing. Phys. Rev. A 96(2), 022330 (2017)

    Article  Google Scholar 

  20. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoret. Comput. Sci. 237(1–2), 275–306 (2000)

    Article  MathSciNet  Google Scholar 

  21. Möttönen, M., Vartiainen, J.J.: Decompositions of general quantum gates. Trends in Quantum Computing Research (2006)

    Google Scholar 

  22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, USA (2011)

    Google Scholar 

  23. O’Gorman, B., Huggins, W.J., Rieffel, E.G., Whaley, K.B.: Generalized swap networks for near-term quantum computing. arXiv preprint arXiv:1905.05118 (2019)

  24. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79–590 (2018)

    Article  Google Scholar 

  25. Qiskit contributors: Qiskit: an open-source framework for quantum computing (2023). https://doi.org/10.5281/zenodo.2573505

  26. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10, 355–377 (2011)

    Article  MathSciNet  Google Scholar 

  27. Salehi, Ö., Yakaryılmaz, A.: Cost-efficient QFA algorithm for quantum computers. CoRR abs/2107.02262 (2021). https://arxiv.org/abs/2107.02262

  28. Takita, M., Inoue, K., Lekuch, S., Minev, Z.K., Chow, J.M., Gambetta, J.M.: Exploiting dynamic quantum circuits in a quantum algorithm with superconducting qubits. Phys. Rev. Lett. 127(10), 100501 (2021)

    Article  Google Scholar 

  29. Ziiatdinov, M., Khadieva, A., Yakaryılmaz, A.: Gaps for shallow implementation of quantum finite automata. In: Proceedings of the 16th International Conference on Automata and Formal Languages (AFL 2023). EPTCS, vol. 386, pp. 269–280 (2023)

    Google Scholar 

  30. Zinnatullin, I., Khadiev, K., Khadieva, A.: Efficient implementation of amplitude form of quantum hashing using state-of-the-art quantum processors. Russ. Microlectron. 52(Suppl 1), S390–S394 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank our colleagues Kamil Khadiev, Mansur Ziatdinov, Aleksander Vasiliev, and Aida Gainutdinova for useful discussions. Part of this work was done by Khadevia during QCourse570-1 “Projects in Quantum” in Spring 2022 conducted by QWorld & University of Latvia and supported by Unitary Fund. The research in Sect. 3 has been supported by the Kazan Federal University Strategic Academic Leadership Program (“PRIORITY-2030”). The research in Sects. 4 and 5 is supported by Russian Science Foundation Grant 24-21-00406, https://rscf.ru/en/project/24-21-00406/.

Salehi was partially supported by Polish National Science Center under the grant agreement 2019/33/B/ST6/02011.

Yakaryılmaz was partially supported by the Latvian Quantum Initiative under European Union Recovery and Resilience Facility project no. 2.3.1.1.i.0/1 /22/I/CFLA/001, the ERDF project Nr. 1.1.1.5/19/A/005 “Quantum computers with constant memory”, and the ERDF project number 1.1.1.5/18/A/020 “Quantum algorithms: from complexity theory to experiment”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliya Khadieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khadieva, A., Salehi, Ö., Yakaryılmaz, A. (2024). A Representative Framework for Implementing Quantum Finite Automata on Real Devices. In: Cho, DJ., Kim, J. (eds) Unconventional Computation and Natural Computation. UCNC 2024. Lecture Notes in Computer Science, vol 14776. Springer, Cham. https://doi.org/10.1007/978-3-031-63742-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63742-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63741-4

  • Online ISBN: 978-3-031-63742-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics