Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Sampling for Non-intrusive Reduced Order Models Using Multi-task Variance

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Non-intrusive reduced order modeling methods (ROMs) have become increasingly popular for science and engineering applications such as predicting the field-based solutions for aerodynamic flows. A large sample size is, however, required to train the models for global accuracy. In this paper, a novel adaptive sampling strategy is introduced for these models that uses field-based uncertainty as a sampling metric. The strategy uses Monte Carlo simulations to propagate the uncertainty in the prediction of the latent space of the ROM obtained using a multi-task Gaussian process to the high-dimensional solution of the ROM. The high-dimensional uncertainty is used to discover new sampling locations to improve the global accuracy of the ROM with fewer samples. The performance of the proposed method is demonstrated on the environment model function and compared to one-shot sampling strategies. The results indicate that the proposed adaptive sampling strategies can reduce the mean relative error of the ROM to the order of \(8 \times 10^{-4}\) which is a 20% and 27% improvement over the Latin hypercube and Halton sequence sampling strategies, respectively at the same number of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aute, V., Saleh, K., Abdelaziz, O., Azarm, S., Radermacher, R.: Cross-validation based single response adaptive design of experiments for Kriging metamodeling of deterministic computer simulations. Struct. Multidiscip. Optim. 48, 581–605 (2013). https://doi.org/10.1007/s00158-013-0918-5

    Article  Google Scholar 

  2. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015). https://doi.org/10.1137/130932715

    Article  MathSciNet  Google Scholar 

  3. Bliznyuk, N., Ruppert, D., Shoemaker, C., Regis, R., Wild, S., Mugunthan, P.: Bayesian calibration and uncertainty analysis for computationally expensive models using optimization and radial basis function approximation. J. Comput. Graph. Stat. 17, 270–294 (2008). https://doi.org/10.1198/106186008X320681

    Article  MathSciNet  Google Scholar 

  4. Bonilla, E.V., Chai, K., Williams, C.: Multi-task Gaussian process prediction. In: Advances in Neural Information Processing Systems, Vancouver, Canada, 3–6 December 2007, vol. 20 (2007)

    Google Scholar 

  5. Braconnier, T., Ferrier, M., Jouhaud, J.C., Montagnac, M., Sagaut, P.: Towards an adaptive POD/SVD surrogate model for aeronautic design. Comput. Fluids 40, 195–209 (2011). https://doi.org/10.1016/j.compfluid.2010.09.002

    Article  MathSciNet  Google Scholar 

  6. Decker, K., Iyengar, N., Rajaram, D., Perron, C., Mavris, D.: Manifold alignment-based nonintrusive and nonlinear multifidelity reduced-order modeling. AIAA J. 61, 454–474 (2023). https://doi.org/10.2514/1.J061720

    Article  Google Scholar 

  7. Du, X., Wang, J., Martins, J.R.: A fully automated adaptive sampling strategy for reduced-order modeling of flow fields. In: AIAA SciTech 2023 Forum, National Harbor, MD, 23–27 January 2023 (2023). https://doi.org/10.2514/6.2023-0534

  8. Franz, T., Zimmermann, R., Görtz, S.: Adaptive sampling for nonlinear dimensionality reduction based on manifold learning. Model. Simul. Appl. 17, 255–269 (2017). https://doi.org/10.1007/978-3-319-58786-8_16

    Article  MathSciNet  Google Scholar 

  9. Fuhg, J.N., Fau, A., Nackenhorst, U.: State-of-the-art and comparative review of adaptive sampling methods for Kriging. Arch. Comput. Meth. Eng. 28, 2689–2747 (2021). https://doi.org/10.1007/s11831-020-09474-6

    Article  MathSciNet  Google Scholar 

  10. Gardner, J.R., Pleiss, G., Bindel, D., Weinberger, K.Q., Wilson, A.G.: GPyTorch: blackbox matrix-matrix Gaussian process inference with GPU acceleration. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, 3–8 December 2018, pp. 7587–7597 (2018)

    Google Scholar 

  11. Guénot, M., Lepot, I., Sainvitu, C., Goblet, J., Coelho, R.F.: Adaptive sampling strategies for non-intrusive POD-based surrogates. Eng. Comput. (Swansea, Wales) 30, 521–547 (2013). https://doi.org/10.1108/02644401311329352

    Article  Google Scholar 

  12. Halder, R., Fidkowski, K.J., Maki, K.J.: Non-intrusive reduced-order modeling using convolutional autoencoders. Int. J. Numer. Meth. Eng. 123, 5369–5390 (2022). https://doi.org/10.1002/nme.7072

    Article  MathSciNet  Google Scholar 

  13. Jiang, P., Shu, L., Zhou, Q., Zhou, H., Shao, X., Xu, J.: A novel sequential exploration-exploitation sampling strategy for global metamodeling. IFAC-PapersOnLine 48, 532–537 (2015). https://doi.org/10.1016/j.ifacol.2015.12.183

    Article  Google Scholar 

  14. Karcher, N., Franz, T.: Adaptive sampling strategies for reduced-order modeling. CEAS Aeronaut. J. 13, 487–502 (2022). https://doi.org/10.1007/s13272-022-00574-6

    Article  Google Scholar 

  15. Liu, H., Ong, Y.S., Cai, J.: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design. Struct. Multidiscip. Optim. 57, 393–416 (2018). https://doi.org/10.1007/s00158-017-1739-8

    Article  Google Scholar 

  16. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953). https://doi.org/10.1063/1.1699114

    Article  Google Scholar 

  17. Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. SIAM (1992). https://doi.org/10.1137/1.9781611970081.fm

    Article  Google Scholar 

  18. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: 33rd Conference on Neural Information Processing Systems, NeurIPS 2019, Vancouver, Canada, 8–14 December 2019 (2019)

    Google Scholar 

  19. Rajaram, D., Perron, C., Puranik, T.G., Mavris, D.N.: Randomized algorithms for non-intrusive parametric reduced order modeling. AIAA J. 58, 5389–5407 (2020). https://doi.org/10.2514/1.J059616

    Article  Google Scholar 

  20. Sabater, C., Stürmer, P., Bekemeyer, P.: Fast predictions of aircraft aerodynamics using deep-learning techniques. AIAA J. 60, 5249–5261 (2022). https://doi.org/10.2514/1.J061234

    Article  Google Scholar 

  21. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  22. Tang, B.: Orthogonal array-based Latin hypercubes. J. Am. Stat. Assoc. 88(424), 1392–1397 (1993). https://doi.org/10.1080/01621459.1993.10476423

    Article  MathSciNet  Google Scholar 

  23. Yang, M., Xiao, Z.: POD-based surrogate modeling of transitional flows using an adaptive sampling in Gaussian process. Int. J. Heat Fluid Flow 84, 108596 (2020). https://doi.org/10.1016/j.ijheatfluidflow.2020.108596

    Article  Google Scholar 

  24. Yu, J., Yan, C., Guo, M.: Non-intrusive reduced-order modeling for fluid problems: a brief review. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233, 5896–5912 (2019). https://doi.org/10.1177/0954410019890721

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the U.S. National Science Foundation (NSF) award number 2223732 and by the Icelandic Centre for Research (RANNIS) award number 239858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijnan Dikshit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dikshit, A., Leifsson, L., Koziel, S., Pietrenko-Dabrowska, A. (2024). Adaptive Sampling for Non-intrusive Reduced Order Models Using Multi-task Variance. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63775-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63774-2

  • Online ISBN: 978-3-031-63775-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics