Abstract
In this study, we employed a clustering approach to analyze fMRI data from a publicly available dataset of patients with mild depression. We utilized the CONN toolbox, a widely recognized tool, to extract functional networks from the fMRI data. Subsequently, these networks were aligned using MULTIMAGNA++, a global multiple alignment software, to ensure consistency across individual datasets. The aligned data was then subjected to a clustering analysis to investigate the presence of distinct patterns. Our findings demonstrate that not only is it feasible to accurately cluster patients using this approach, but there is also potential to uncover previously unidentified subgroups among both control subjects and those affected by the disease. These results suggest new avenues for understanding the neurobiological underpinnings of mild depression and for developing targeted interventions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agapito, G., Guzzi, P.H., Cannataro, M.: Visualization of protein interaction networks: problems and solutions. BMC Bioinform. 14, 1–30 (2013)
Agapito, G., Milano, M., Cannataro, M.: A Python clustering analysis protocol of genes expression data sets. Genes 13(10) (2022). https://www.mdpi.com/2073-4425/13/10/1839
Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1), 90–101 (2007). https://doi.org/10.1016/j.neuroimage.2007.04.042. https://linkinghub.elsevier.com/retrieve/pii/S1053811907003837
Bezmaternykh, D.D., et al.: Brain networks connectivity in mild to moderate depression: resting state fMRI study with implications to nonpharmacological treatment. Neural Plast. 2021, 1–15 (2021). https://doi.org/10.1155/2021/8846097. https://www.hindawi.com/journals/np/2021/8846097/
Bezmaternykh, D.D., Melnikov, M.E., Savelov, A.A., Petrovskii, E.D.: Resting state with closed eyes for patients with depression and healthy participants (2021). https://doi.org/10.18112/OPENNEURO.DS002748.V1.0.5. https://openneuro.org/datasets/ds002748/versions/1.0.5
Chai, X.J., Castañón, A.N., Öngür, D., Whitfield-Gabrieli, S.: Anticorrelations in resting state networks without global signal regression. Neuroimage 59(2), 1420–1428 (2012). https://doi.org/10.1016/j.neuroimage.2011.08.048. https://linkinghub.elsevier.com/retrieve/pii/S1053811911009657
Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.021
DeYoe, E.A., Bandettini, P., Neitz, J., Miller, D., Winans, P.: Functional magnetic resonance imaging (FMRI) of the human brain. J. Neurosci. Methods 54(2), 171–187 (1994). https://doi.org/10.1016/0165-0270(94)90191-0
Esteban, O., et al.: fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16(1), 111–116 (2019). https://doi.org/10.1038/s41592-018-0235-4. https://www.nature.com/articles/s41592-018-0235-4
Ezugwu, A.E., et al.: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 110, 104743 (2022). https://doi.org/10.1016/j.engappai.2022.104743. https://linkinghub.elsevier.com/retrieve/pii/S095219762200046X
Farahani, F.V., Karwowski, W., Lighthall, N.R.: Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front. Neurosci. 13 (2019). https://www.frontiersin.org/articles/10.3389/fnins.2019.00585
Frank, E., Hall, M.A., Witten, I.H.: The WEKA workbench. Online Appendix. In: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann (2016)
Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., Turner, R.: Movement-related effects in fMRI time-series. Magn. Reson. Med. 35(3), 346–355 (1996). https://doi.org/10.1002/mrm.1910350312
Hallquist, M.N., Hwang, K., Luna, B.: The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage 82, 208–225 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.116. https://linkinghub.elsevier.com/retrieve/pii/S1053811913006265
ICD-10 Version:2019. https://icd.who.int/browse10/2019/en
Milano, M., Guzzi, P.H., Cannataro, M.: Network building and analysis in connectomics studies: a review of algorithms, databases and technologies. Netw. Model. Anal. Health Inform. Bioinform. 8(1), 13 (2019). https://doi.org/10.1007/s13721-019-0192-6
Nieto-Castanon, A.: Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press (2020). https://doi.org/10.56441/hilbertpress.2207.6598. https://www.hilbertpress.org/link-nieto-castanon2020
Nieto-Castanon, A.: Preparing fMRI Data for Statistical Analysis (2022). https://doi.org/10.48550/ARXIV.2210.13564. https://arxiv.org/abs/2210.13564, publisher: [object Object] Version Number: 1
Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990). https://doi.org/10.1073/pnas.87.24.9868
Pastrello, C., et al.: Visual data mining of biological networks: one size does not fit all. PLoS Comput. Biol. 9(1), e1002833 (2013)
Poston, K.L., Eidelberg, D.: Functional brain networks and abnormal connectivity in the movement disorders. NeuroImage 62(4), 2261–2270 (2012). https://doi.org/10.1016/j.neuroimage.2011.12.021. https://www.sciencedirect.com/science/article/pii/S1053811911014236
Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014). https://doi.org/10.1016/j.neuroimage.2013.08.048. https://linkinghub.elsevier.com/retrieve/pii/S1053811913009117
Shibasaki, H.: Human brain mapping: hemodynamic response and electrophysiology. Clin. Neurophysiol. 119(4), 731–743 (2008). https://doi.org/10.1016/j.clinph.2007.10.026. https://www.sciencedirect.com/science/article/pii/S1388245707006578
Silva, M.A., See, A.P., Essayed, W.I., Golby, A.J., Tie, Y.: Challenges and techniques for presurgical brain mapping with functional MRI. NeuroImage. Clinical 17, 794–803 (2018). https://doi.org/10.1016/j.nicl.2017.12.008
Soares, J.F., et al.: Task-based functional MRI challenges in clinical neuroscience: choice of the best head motion correction approach in multiple sclerosis. Front. Neurosci. 16, 1017211 (2022). https://doi.org/10.3389/fnins.2022.1017211. https://www.frontiersin.org/articles/10.3389/fnins.2022.1017211/full
Vijayan, V., Milenkovic, T.: Multiple network alignment via MultiMAGNA+. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(5), 1669–1682 (2018). https://doi.org/10.1109/TCBB.2017.2740381
Whitfield-Gabrieli, S., Nieto-Castanon, A.: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2(3), 125–141 (2012). https://doi.org/10.1089/brain.2012.0073
Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., Evans, A.C.: A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 4(1), 58–73 (1996). https://doi.org/10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
Acknowledgement
This work was funded by the Next Generation EU - Italian NRRP, Mission 4, Component 2, Investment 1.5, call for the creation and strengthening of ‘Innovation Ecosystems’, building ‘Territorial R &D Leaders’ (Directorial Decree n. 2021/3277) - project Tech4You - Technologies for climate change adaptation and quality of life improvement, n. ECS0000009. This work reflects only the authors’ views and opinions, neither the Ministry for University and Research nor the European Commission can be considered responsible for them.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Barillaro, L. et al. (2024). A Graph-Theory Based fMRI Analysis. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14837. Springer, Cham. https://doi.org/10.1007/978-3-031-63778-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-63778-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63777-3
Online ISBN: 978-3-031-63778-0
eBook Packages: Computer ScienceComputer Science (R0)