Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Graph-Theory Based fMRI Analysis

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

In this study, we employed a clustering approach to analyze fMRI data from a publicly available dataset of patients with mild depression. We utilized the CONN toolbox, a widely recognized tool, to extract functional networks from the fMRI data. Subsequently, these networks were aligned using MULTIMAGNA++, a global multiple alignment software, to ensure consistency across individual datasets. The aligned data was then subjected to a clustering analysis to investigate the presence of distinct patterns. Our findings demonstrate that not only is it feasible to accurately cluster patients using this approach, but there is also potential to uncover previously unidentified subgroups among both control subjects and those affected by the disease. These results suggest new avenues for understanding the neurobiological underpinnings of mild depression and for developing targeted interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://openneuro.org/datasets/ds002748/versions/1.0.5.

References

  1. Agapito, G., Guzzi, P.H., Cannataro, M.: Visualization of protein interaction networks: problems and solutions. BMC Bioinform. 14, 1–30 (2013)

    Article  Google Scholar 

  2. Agapito, G., Milano, M., Cannataro, M.: A Python clustering analysis protocol of genes expression data sets. Genes 13(10) (2022). https://www.mdpi.com/2073-4425/13/10/1839

  3. Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1), 90–101 (2007). https://doi.org/10.1016/j.neuroimage.2007.04.042. https://linkinghub.elsevier.com/retrieve/pii/S1053811907003837

  4. Bezmaternykh, D.D., et al.: Brain networks connectivity in mild to moderate depression: resting state fMRI study with implications to nonpharmacological treatment. Neural Plast. 2021, 1–15 (2021). https://doi.org/10.1155/2021/8846097. https://www.hindawi.com/journals/np/2021/8846097/

  5. Bezmaternykh, D.D., Melnikov, M.E., Savelov, A.A., Petrovskii, E.D.: Resting state with closed eyes for patients with depression and healthy participants (2021). https://doi.org/10.18112/OPENNEURO.DS002748.V1.0.5. https://openneuro.org/datasets/ds002748/versions/1.0.5

  6. Chai, X.J., Castañón, A.N., Öngür, D., Whitfield-Gabrieli, S.: Anticorrelations in resting state networks without global signal regression. Neuroimage 59(2), 1420–1428 (2012). https://doi.org/10.1016/j.neuroimage.2011.08.048. https://linkinghub.elsevier.com/retrieve/pii/S1053811911009657

  7. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  Google Scholar 

  8. DeYoe, E.A., Bandettini, P., Neitz, J., Miller, D., Winans, P.: Functional magnetic resonance imaging (FMRI) of the human brain. J. Neurosci. Methods 54(2), 171–187 (1994). https://doi.org/10.1016/0165-0270(94)90191-0

    Article  Google Scholar 

  9. Esteban, O., et al.: fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16(1), 111–116 (2019). https://doi.org/10.1038/s41592-018-0235-4. https://www.nature.com/articles/s41592-018-0235-4

  10. Ezugwu, A.E., et al.: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 110, 104743 (2022). https://doi.org/10.1016/j.engappai.2022.104743. https://linkinghub.elsevier.com/retrieve/pii/S095219762200046X

  11. Farahani, F.V., Karwowski, W., Lighthall, N.R.: Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front. Neurosci. 13 (2019). https://www.frontiersin.org/articles/10.3389/fnins.2019.00585

  12. Frank, E., Hall, M.A., Witten, I.H.: The WEKA workbench. Online Appendix. In: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann (2016)

    Google Scholar 

  13. Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., Turner, R.: Movement-related effects in fMRI time-series. Magn. Reson. Med. 35(3), 346–355 (1996). https://doi.org/10.1002/mrm.1910350312

    Article  Google Scholar 

  14. Hallquist, M.N., Hwang, K., Luna, B.: The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage 82, 208–225 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.116. https://linkinghub.elsevier.com/retrieve/pii/S1053811913006265

  15. ICD-10 Version:2019. https://icd.who.int/browse10/2019/en

  16. Milano, M., Guzzi, P.H., Cannataro, M.: Network building and analysis in connectomics studies: a review of algorithms, databases and technologies. Netw. Model. Anal. Health Inform. Bioinform. 8(1), 13 (2019). https://doi.org/10.1007/s13721-019-0192-6

  17. Nieto-Castanon, A.: Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Hilbert Press (2020). https://doi.org/10.56441/hilbertpress.2207.6598. https://www.hilbertpress.org/link-nieto-castanon2020

  18. Nieto-Castanon, A.: Preparing fMRI Data for Statistical Analysis (2022). https://doi.org/10.48550/ARXIV.2210.13564. https://arxiv.org/abs/2210.13564, publisher: [object Object] Version Number: 1

  19. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990). https://doi.org/10.1073/pnas.87.24.9868

    Article  Google Scholar 

  20. Pastrello, C., et al.: Visual data mining of biological networks: one size does not fit all. PLoS Comput. Biol. 9(1), e1002833 (2013)

    Article  Google Scholar 

  21. Poston, K.L., Eidelberg, D.: Functional brain networks and abnormal connectivity in the movement disorders. NeuroImage 62(4), 2261–2270 (2012). https://doi.org/10.1016/j.neuroimage.2011.12.021. https://www.sciencedirect.com/science/article/pii/S1053811911014236

  22. Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014). https://doi.org/10.1016/j.neuroimage.2013.08.048. https://linkinghub.elsevier.com/retrieve/pii/S1053811913009117

  23. Shibasaki, H.: Human brain mapping: hemodynamic response and electrophysiology. Clin. Neurophysiol. 119(4), 731–743 (2008). https://doi.org/10.1016/j.clinph.2007.10.026. https://www.sciencedirect.com/science/article/pii/S1388245707006578

  24. Silva, M.A., See, A.P., Essayed, W.I., Golby, A.J., Tie, Y.: Challenges and techniques for presurgical brain mapping with functional MRI. NeuroImage. Clinical 17, 794–803 (2018). https://doi.org/10.1016/j.nicl.2017.12.008

  25. Soares, J.F., et al.: Task-based functional MRI challenges in clinical neuroscience: choice of the best head motion correction approach in multiple sclerosis. Front. Neurosci. 16, 1017211 (2022). https://doi.org/10.3389/fnins.2022.1017211. https://www.frontiersin.org/articles/10.3389/fnins.2022.1017211/full

  26. Vijayan, V., Milenkovic, T.: Multiple network alignment via MultiMAGNA+. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(5), 1669–1682 (2018). https://doi.org/10.1109/TCBB.2017.2740381

    Article  Google Scholar 

  27. Whitfield-Gabrieli, S., Nieto-Castanon, A.: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2(3), 125–141 (2012). https://doi.org/10.1089/brain.2012.0073

    Article  Google Scholar 

  28. Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., Evans, A.C.: A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 4(1), 58–73 (1996). https://doi.org/10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by the Next Generation EU - Italian NRRP, Mission 4, Component 2, Investment 1.5, call for the creation and strengthening of ‘Innovation Ecosystems’, building ‘Territorial R &D Leaders’ (Directorial Decree n. 2021/3277) - project Tech4You - Technologies for climate change adaptation and quality of life improvement, n. ECS0000009. This work reflects only the authors’ views and opinions, neither the Ministry for University and Research nor the European Commission can be considered responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Barillaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barillaro, L. et al. (2024). A Graph-Theory Based fMRI Analysis. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14837. Springer, Cham. https://doi.org/10.1007/978-3-031-63778-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63778-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63777-3

  • Online ISBN: 978-3-031-63778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics