Abstract
For adapting to humans, explainable AI (XAI) quality can benefit from human expressions beyond verbal expressions. This is particularly true for emotions, as emotions affect how information is processed and subsequent decision-making. We analyze how different explanation strategies of XAI are perceived when the human interaction partner shows high arousal and/or valence. In a between-subjects experimental setting, we show that individuals with low arousal follow advice with no attempt to any explanation. On the contrary, individuals in a highly aroused state respond best to explanations with some justification (guided explanations). Concerning varying levels of valence, we find no similar pattern. Our results suggest that specific XAI strategies should be adapted not only to humans’ cognitive needs but also to humans’ information processing capacities and needs, which depend on emotional arousal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note, however, that personality traits have been shown to affect advice-taking: Matarese et al. [41] found that explainees who were high in agreeableness were more likely to follow robot advice than people with low agreeableness.
- 2.
See also Lammert et al. [28] for more explanation about the method and materials.
References
Bailey, P.E., Leon, T., Ebner, N.C., Moustafa, A.A., Weidemann, G.: A meta-analysis of the weight of advice in decision-making. Curr. Psychol. 42(28), 24516–24541 (2023)
Bechara, A., Damasio, H., Damasio, A.R.: Role of the amygdala in decision-making. Ann. N. Y. Acad. Sci. 985(1), 356–369 (2003)
Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)
Collins, N.L.: Working models of attachment: implications for explanation, emotion, and behavior. J. Pers. Soc. Psychol. 71(4), 810 (1996)
Comstock, L.M., Hooper, E.M., Goodwin, J.M., Goodwin, J.S.: Physician behaviors that correlate with patient satisfaction. Acad. Med. 57(2), 105–12 (1982)
Dietvorst, B.J., Simmons, J.P., Massey, C.: Algorithm aversion: people erroneously avoid algorithms after seeing them err. J. Exp. Psychol. Gen. 144(1), 114 (2015)
Duncan, S., Barrett, L.F.: Affect is a form of cognition: a neurobiological analysis. Cogn. Emot. 21(6), 1184–1211 (2007)
Fernandes, M.A., Koji, S., Dixon, M.J., Aquino, J.M.: Changing the focus of attention: the interacting effect of valence and arousal. Vis. Cogn. 19(9), 1191–1211 (2011)
Fox, C.R., Tannenbaum, D.: The elusive search for stable risk preferences. Front. Psychol. 2, 298 (2011)
Fredrickson, B.L.: Chapter one - positive emotions broaden and build. Adv. Exp. Social Psychol. 47, 1–53 (2013). https://doi.org/10.1016/B978-0-12-407236-7.00001-2. https://www.sciencedirect.com/science/article/pii/B9780124072367000012
Frenzel, A.C., Goetz, T., Lüdtke, O., Pekrun, R., Sutton, R.E.: Emotional transmission in the classroom: exploring the relationship between teacher and student enjoyment. J. Educ. Psychol. 101(3), 705 (2009)
Gasper, K., Clore, G.L.: Attending to the big picture: mood and global versus local processing of visual information. Psychol. Sci. 13(1), 34–40 (2002)
Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89. IEEE (2018)
Griffith, C.H., III., Wilson, J.F., Langer, S., Haist, S.A.: House staff nonverbal communication skills and standardized patient satisfaction. J. Gen. Intern. Med. 18(3), 170–174 (2003)
Grimm, J.: State-trait-anxiety inventory nach spielberger. Deutsche Lang-und Kurzversion. Methodenforum der Universität Wien: MF-Working Paper 2, 2009 (2009)
Groß, A., et al.: Scaffolding the human partner by contrastive guidance in an explanatory human-robot dialogue. Front. Rob. AI 10 (2023)
Hanselle, J., Kornowicz, J., Heid, S., Thommes, K., Hüllermeier, E.: Comparing humans and algorithms in feature ranking: a case-study in the medical domain (2023)
Harvey, N., Fischer, I.: Taking advice: accepting help, improving judgment, and sharing responsibility. Organ. Behav. Hum. Decis. Process. 70(2), 117–133 (1997)
Hegel, F., Eyssel, F., Wrede, B.: The social robot ‘flobi’: key concepts of industrial design. In: 19th International Symposium in Robot and Human Interactive Communication, pp. 107–112. IEEE (2010)
Hidi, S., Renninger, K.A.: The four-phase model of interest development. Educ. Psychol. 41(2), 111–127 (2006)
Hoffmann, C., Thommes, K.: Can digital feedback increase employee performance and energy efficiency in firms? evidence from a field experiment. J. Econ. Behav. Organ. 180, 49–65 (2020)
Hofheinz, C., Germar, M., Schultze, T., Michalak, J., Mojzisch, A.: Are depressed people more or less susceptible to informational social influence? Cogn. Ther. Res. 41, 699–711 (2017)
Holt, C.A., Laury, S.K.: Risk aversion and incentive effects. Am. Econ. Rev. 92(5), 1644–1655 (2002)
Hudon, A., Demazure, T., Karran, A., Léger, P.-M., Sénécal, S.: Explainable artificial intelligence (XAI): how the visualization of ai predictions affects user cognitive load and confidence. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B., Müller-Putz, G. (eds.) NeuroIS 2021. LNISO, vol. 52, pp. 237–246. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88900-5_27
Kaptein, F., Broekens, J., Hindriks, K., Neerincx, M.: The role of emotion in self-explanations by cognitive agents. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), pp. 88–93. IEEE (2017)
Kim, T., Hinds, P.: Who should i blame? effects of autonomy and transparency on attributions in human-robot interaction. In: ROMAN 2006-The 15th IEEE International Symposium on Robot and Human Interactive Communication, pp. 80–85. IEEE (2006)
Kratzwald, B., Ilić, S., Kraus, M., Feuerriegel, S., Prendinger, H.: Deep learning for affective computing: text-based emotion recognition in decision support. Decis. Support Syst. 115, 24–35 (2018)
Lammert, O., Richter, B., Schütze, C., Thommes, K., Wrede, B.: Humans in xai: increased reliance in decision-making under uncertainty by using explanation strategies. Front. Behav. Econ. 3 (2024). https://doi.org/10.3389/frbhe.2024.1377075
Laux, L., Glanzmann, P., Schaffner, P., Spielberger, C.D.: Das state-trait-angstinventar [the state-trait anxiety inventory]. Hogrefe, Göttingen (in German) (1981)
Lee, T.H., Sakaki, M., Cheng, R., Velasco, R., Mather, M.: Emotional arousal amplifies the effects of biased competition in the brain. Social Cogn. Affect. Neurosci. 9(12), 2067–2077 (2014)
Leong, Y.C., Dziembaj, R., D’Esposito, M.: Pupil-linked arousal biases evidence accumulation toward desirable percepts during perceptual decision-making. Psychol. Sci. 32(9), 1494–1509 (2021)
Lerner, J.S., Han, S., Keltner, D.: Feelings and consumer decision making: extending the appraisal-tendency framework. J. Consum. Psychol. 17(3), 181–187 (2007)
Lerner, J.S., Tiedens, L.Z.: Portrait of the angry decision maker: how appraisal tendencies shape anger’s influence on cognition. J. Behav. Decis. Mak. 19(2), 115–137 (2006)
Levitt, S.D., List, J.A.: What do laboratory experiments measuring social preferences reveal about the real world? J. Econ. Perspect. 21(2), 153–174 (2007)
Lighthall, G.K., Vazquez-Guillamet, C.: Understanding decision making in critical care. Clin. Med. Res. 13(3–4), 156–168 (2015)
Loewenstein, G.: Hot-cold empathy gaps and medical decision making. Health Psychol. 24(4S), S49 (2005)
Logg, J.M., Minson, J.A., Moore, D.A.: Algorithm appreciation: people prefer algorithmic to human judgment. Organ. Behav. Hum. Decis. Process. 151, 90–103 (2019)
Lütkebohle, I., et al.: The bielefeld anthropomorphic robot head “flobi”. In: 2010 IEEE International Conference on Robotics and Automation, pp. 3384–3391. IEEE (2010)
Madhavan, P., Wiegmann, D.A.: Similarities and differences between human-human and human-automation trust: an integrative review. Theor. Issues Ergon. Sci. 8(4), 277–301 (2007)
Matarese, M., Cocchella, F., Rea, F., Sciutti, A.: Ex (plainable) machina: how social-implicit xai affects complex human-robot teaming tasks. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11986–11993. IEEE (2023)
Matarese, M., Cocchella, F., Rea, F., Sciutti, A.: Natural born explainees: how users’ personality traits shape the human-robot interaction with explainable robots. In: 2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1786–1793. IEEE (2023)
Mather, M., Sutherland, M.R.: Arousal-biased competition in perception and memory. Perspect. Psychol. Sci. 6(2), 114–133 (2011)
Moon, Y., Nass, C.: Are computers scapegoats? attributions of responsibility in human-computer interaction. Int. J. Hum Comput Stud. 49(1), 79–94 (1998)
Paul, E.S., Sher, S., Tamietto, M., Winkielman, P., Mendl, M.T.: Towards a comparative science of emotion: affect and consciousness in humans and animals. Neurosci. Biobehav. Rev. 108, 749–770 (2020)
Pekrun, R.: The control-value theory of achievement emotions: assumptions, corollaries, and implications for educational research and practice. Educ. Psychol. Rev. 18, 315–341 (2006)
Planalp, S., Fitness, J.: Thinking/feeling about social and personal relationships. J. Soc. Pers. Relat. 16(6), 731–750 (1999)
Prahl, A., Van Swol, L.: Understanding algorithm aversion: when is advice from automation discounted? J. Forecast. 36(6), 691–702 (2017)
Rosenthal-von der Pütten, A.M., Krämer, N.C., Hoffmann, L., Sobieraj, S., Eimler, S.C.: An experimental study on emotional reactions towards a robot. Int. J. Social Rob. 5, 17–34 (2013)
Rabin, M., Thaler, R.H.: Anomalies: risk aversion. J. Econ. Perspect. 15(1), 219–232 (2001)
Rauthmann, J.F.: Personality is (so much) more than just self-reported big five traits. Eur. J. Pers. 08902070231221853 (2023)
Reeves, B., Nass, C.: The media equation: how people treat computers, television, and new media like real people. Cambridge, UK 10(10) (1996)
Robertson, C.E., Pröllochs, N., Schwarzenegger, K., Pärnamets, P., Van Bavel, J.J., Feuerriegel, S.: Negativity drives online news consumption. Nat. Hum. Behav. 7(5), 812–822 (2023)
Rohlfing, K.J., et al.: Explanation as a social practice: toward a conceptual framework for the social design of AI systems. IEEE Trans. Cogn. Dev. Syst. 13(3), 717–728 (2020)
Roter, D.L., Frankel, R.M., Hall, J.A., Sluyter, D.: The expression of emotion through nonverbal behavior in medical visits: mechanisms and outcomes. J. Gen. Intern. Med. 21, 28–34 (2006)
Schemmer, M., Hemmer, P., Nitsche, M., Kühl, N., Vössing, M.: A meta-analysis of the utility of explainable artificial intelligence in human-AI decision-making. In: Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, pp. 617–626 (2022)
Schmidt, P., Biessmann, F., Teubner, T.: Transparency and trust in artificial intelligence systems. J. Decis. Syst. 29(4), 260–278 (2020)
Schniter, E., Shields, T.W., Sznycer, D.: Trust in humans and robots: economically similar but emotionally different. J. Econ. Psychol. 78, 102253 (2020)
Schoonderwoerd, T.A., Jorritsma, W., Neerincx, M.A., Van Den Bosch, K.: Human-centered xai: developing design patterns for explanations of clinical decision support systems. Int. J. Hum Comput Stud. 154, 102684 (2021)
Schultze, T., Rakotoarisoa, A.F., Stefan, S.H.: Effects of distance between initial estimates and advice on advice utilization. Judgm. Decis. Mak. 10(2), 144–171 (2015)
Schütze, C., Lammert, O., Richter, B., Thommes, K., Wrede, B.: Emotional debiasing explanations for decisions in hci. In: Degen, H., Ntoa, S. (eds.) International Conference on Human-Computer Interaction, pp. 318–336. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-35891-3_20
Schwarz, N., Clore, G.L.: Mood as information: 20 years later. Psychol. Inq. 14(3–4), 296–303 (2003)
Song, Y., Luximon, Y.: Trust in AI agent: a systematic review of facial anthropomorphic trustworthiness for social robot design. Sensors 20(18), 5087 (2020)
Sozialforschung: SOEP 2014 – Erhebungsinstrumente 2014 (Welle 31) des Sozio-oekonomischen Panels: Personenfragebogen, Altstichproben. SOEP Survey Papers 235: Series A. Berlin: DIW/SOEP (2014)
Springer, A., Whittaker, S.: Progressive disclosure: when, why, and how do users want algorithmic transparency information? ACM Trans. Interact. Intell. Syst. (TiiS) 10(4), 1–32 (2020)
Stock-Homburg, R.: Survey of emotions in human-robot interactions: perspectives from robotic psychology on 20 years of research. Int. J. Soc. Robot. 14(2), 389–411 (2022)
Wang, D., Yang, Q., Abdul, A., Lim, B.Y.: Designing theory-driven user-centric explainable AI. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2019)
Weber, E.U., Blais, A.R., Betz, N.E.: A domain-specific risk-attitude scale: measuring risk perceptions and risk behaviors. J. Behav. Decis. Mak. 15(4), 263–290 (2002)
Wichary, S., Mata, R., Rieskamp, J.: Probabilistic inferences under emotional stress: how arousal affects decision processes. J. Behav. Decis. Mak. 29(5), 525–538 (2016)
Wu, C.H., Wu, C.C., Kan, M.H., Bayarjargal, U.: Effect of online advertisement types on click behavior in Mongolia: mediating impact of emotion. In: Proceedings of the 4th Multidisciplinary International Social Networks Conference, pp. 1–8 (2017)
Yaniv, I.: The benefit of additional opinions. Curr. Dir. Psychol. Sci. 13(2), 75–78 (2004)
Yaniv, I.: Receiving other people’s advice: influence and benefit. Organ. Behav. Hum. Decis. Process. 93(1), 1–13 (2004)
You, S., Yang, C.L., Li, X.: Algorithmic versus human advice: does presenting prediction performance matter for algorithm appreciation? J. Manag. Inf. Syst. 39(2), 336–365 (2022)
Acknowledgments
This research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation): TRR 318/1 2021 - 438445824.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Thommes, K., Lammert, O., Schütze, C., Richter, B., Wrede, B. (2024). Human Emotions in AI Explanations. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2156. Springer, Cham. https://doi.org/10.1007/978-3-031-63803-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-63803-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63802-2
Online ISBN: 978-3-031-63803-9
eBook Packages: Computer ScienceComputer Science (R0)