Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Seum Spread: Discerning Security Flaws in IoT Firmware via Call Sequence Semantics

  • Conference paper
  • First Online:
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14828))

  • 590 Accesses

Abstract

Internet-of-Things (IoT) devices play a central role in the modern digital landscape by providing uninterrupted convenience, but their history has been marked by the opportunities they provide bad actors desiring to exploit them. Vulnerable firmware remains a major factor in exploiting IoT devices. Persistent storage interfaces, which allow data retention even after power loss, can exacerbate this problem. This work examines and informs on the security impact of persistent storage through the lens of security-critical sanitization bypass flaws, computed attack surface spread, and the presence of command injection vulnerabilities; three facets of firmware code that can influence its susceptibility to exploitation. The assessment is established upon manually annotated call sequences that allow reasoning about path sanitization in order to formulate well-founded observations. We assemble a dataset of 100 IoT firmware images from four well-known vendors and initially find 68 devices whose persistent storage receives attacker-controllable input in over 4800 unique unsanitized paths. Furthermore, we discovered 77 instances of sanitization bypass flaws in 32 devices. In addition, we create the taint spread metric to assess the impact of tainted persistent storage on a firmware’s attack surface; in one alarming instance we find tainted data to affect over 1500 firmware code locations. Finally, we leverage the modeled call sequences to detect and exploit seven 0-day command injection vulnerabilities in five acquired devices and five assigned PSVs.

A. Lounis and A. Andreoli—The first two authors contributed equally to this work.

The authors gratefully acknowledge the support and collaboration of the Communication Security Establishment (CSE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Dataset available through email correspondence with first two listed authors.

  2. 2.

    https://github.com/fkie-cad/fact_extractor.

  3. 3.

    Converts human-readable IPv4 string into an address structure.

  4. 4.

    PSV-2023-0150, PSV-2023-0151, PSV-2023-0152, PSV-2023-0153, PSV-2023-0154.

References

  1. Hackers update Cisco IOS XE backdoor to hide infected devices—bleepingcomputer.com. https://www.bleepingcomputer.com/news/security/hackers-update-cisco-ios-xe-backdoor-to-hide-infected-devices/. Accessed 06 Dec 2023

  2. Andreoli, A., Lounis, A., Debbabi, M., Hanna, A.: On the prevalence of software supply chain attacks: empirical study and investigative framework. Forensic Sci. Int. Digit. Invest. 44, 301508 (2023)

    Google Scholar 

  3. Antonakakis, M., et al.: Understanding the mirai botnet. In: 26th USENIX Security Symposium (USENIX Security 2017), pp. 1093–1110 (2017)

    Google Scholar 

  4. Lei, C., Zhang, Z., Hu, C., Das, A.: Mirai variant V3G4 targets IoT devices—unit42.paloaltonetworks.com. https://unit42.paloaltonetworks.com/mirai-variant-v3g4/. Accessed 06 Dec 2023

  5. Chen, D.D., Woo, M., Brumley, D., Egele, M.: Towards automated dynamic analysis for Linux-based embedded firmware. In: NDSS, vol. 1, p. 1 (2016)

    Google Scholar 

  6. Chen, J., et al.: IoTFuzzer: discovering memory corruptions in IoT through app-based fuzzing. In: NDSS (2018)

    Google Scholar 

  7. Chen, L., et al.: Sharing more and checking less: leveraging common input keywords to detect bugs in embedded systems. In: 30th USENIX Security Symposium (USENIX Security 2021), pp. 303–319 (2021)

    Google Scholar 

  8. Cheng, K., et al.: DTaint: detecting the taint-style vulnerability in embedded device firmware. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 430–441. IEEE (2018)

    Google Scholar 

  9. Cheng, K., et al.: Detecting vulnerabilities in Linux-based embedded firmware with SSE-based on-demand alias analysis. In: Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 360–372 (2023)

    Google Scholar 

  10. Clements, A.A., et al.: HALucinator: firmware re-hosting through abstraction layer emulation. In: 29th USENIX Security Symposium (USENIX Security 2020), pp. 1201–1218 (2020)

    Google Scholar 

  11. Costin, A., Zarras, A., Francillon, A.: Automated dynamic firmware analysis at scale: a case study on embedded web interfaces. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, pp. 437–448 (2016)

    Google Scholar 

  12. Gao, Z., et al.: Faster and better: detecting vulnerabilities in Linux-based IoT firmware with optimized reaching definition analysis (2024). https://doi.org/10.14722/ndss.2024.24346

  13. Gui, Z., Shu, H., Kang, F., Xiong, X.: FIRMCORN: vulnerability-oriented fuzzing of IoT firmware via optimized virtual execution. IEEE Access 8, 29826–29841 (2020)

    Article  Google Scholar 

  14. Anton, K., Bird, J., Manico, J.: OWASP top ten proactive controls 2018. About this Project. OWASP foundation—owasp.org (2018). https://owasp.org/www-project-proactive-controls/v3/en/0x02-about-project.html. Accessed 06 Dec 2023

  15. Kim, J., Yu, J., Kim, H., Rustamov, F., Yun, J.: FIRM-COV: high-coverage greybox fuzzing for IoT firmware via optimized process emulation. IEEE Access 9, 101627–101642 (2021). https://doi.org/10.1109/ACCESS.2021.3097807

    Article  Google Scholar 

  16. Kim, M., Kim, D., Kim, E., Kim, S., Jang, Y., Kim, Y.: FirmAE: towards large-scale emulation of IoT firmware for dynamic analysis. In: Annual Computer Security Applications Conference, pp. 733–745 (2020)

    Google Scholar 

  17. Li, X., Wei, Q., Wu, Z., Guo, W.: Finding taint-style vulnerabilities in Lua application of IoT firmware with progressive static analysis. Appl. Sci. 13(17), 9710 (2023)

    Article  Google Scholar 

  18. Livshits, B., Chong, S.: Towards fully automatic placement of security sanitizers and declassifiers. Acm Sigplan Not. 48(1), 385–398 (2013)

    Article  Google Scholar 

  19. MITRE: CWE - CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command Injection’) (4.13)—cwe.mitre.org. https://cwe.mitre.org/data/definitions/78.html. Accessed 06 Dec 2023

  20. Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., Ghani, N.: Demystifying IoT security: an exhaustive survey on IoT vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE Commun. Surv. Tutor. 21(3), 2702–2733 (2019)

    Article  Google Scholar 

  21. Qin, C., et al.: UCRF: static analyzing firmware to generate under-constrained seed for fuzzing SOHO router. Comput. Secur. 128, 103157 (2023)

    Article  Google Scholar 

  22. Redini, N., et al.: Karonte: detecting insecure multi-binary interactions in embedded firmware. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 1544–1561. IEEE (2020)

    Google Scholar 

  23. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware. In: NDSS, vol. 1, p. 1 (2015)

    Google Scholar 

  24. Shoshitaishvili, Y., et al.: SoK: (state of) the art of war: offensive techniques in binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 138–157. IEEE (2016)

    Google Scholar 

  25. Stasinopoulos, A., Ntantogian, C., Xenakis, C.: Commix: automating evaluation and exploitation of command injection vulnerabilities in web applications. Int. J. Inf. Secur. 18, 49–72 (2019)

    Article  Google Scholar 

  26. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execution. In: NDSS, vol. 16, pp. 1–16 (2016)

    Google Scholar 

  27. Topics, T.I.E.: IoT connected devices worldwide 2019–2030. Statista—statista.com (2023). https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide. Accessed 06 Dec 2023

  28. Vadayath, J., et al.: Arbiter: bridging the static and dynamic divide in vulnerability discovery on binary programs. In: 31st USENIX Security Symposium (USENIX Security 2022), pp. 413–430 (2022)

    Google Scholar 

  29. Wang, C., Zhao, S., Peng, J., Zhu, J.: KVFL: key-value-based persistent fuzzing for IoT web servers. Comput. J. bxad110 (2023)

    Google Scholar 

  30. Wu, Y., et al.: Your firmware has arrived: a study of firmware update vulnerabilities (2023)

    Google Scholar 

  31. Yamaguchi, F., Maier, A., Gascon, H., Rieck, K.: Automatic inference of search patterns for taint-style vulnerabilities. In: 2015 IEEE Symposium on Security and Privacy, pp. 797–812. IEEE (2015)

    Google Scholar 

  32. Yun, J., Rustamov, F., Kim, J., Shin, Y.: Fuzzing of embedded systems: a survey. ACM Comput. Surv. 55(7), 1–33 (2022)

    Article  Google Scholar 

  33. Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., Sun, L.: FIRM-AFL: high-throughput greybox fuzzing of iot firmware via augmented process emulation. In: 28th USENIX Security Symposium (USENIX Security 2019), pp. 1099–1114 (2019)

    Google Scholar 

  34. Zhong, W.: Command Injection. OWASP Foundation—owasp.org. https://owasp.org/www-community/attacks/Command_Injection. Accessed 06 Dec 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Lounis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lounis, A., Andreoli, A., Debbabi, M., Hanna, A. (2024). Seum Spread: Discerning Security Flaws in IoT Firmware via Call Sequence Semantics. In: Maggi, F., Egele, M., Payer, M., Carminati, M. (eds) Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2024. Lecture Notes in Computer Science, vol 14828. Springer, Cham. https://doi.org/10.1007/978-3-031-64171-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64171-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64170-1

  • Online ISBN: 978-3-031-64171-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics