Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards the Automated Generation of Readily Applicable Personalised Feedback in Education

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14830))

Included in the following conference series:

  • 1852 Accesses

Abstract

Providing personalised feedback to a large student cohort is a longstanding challenge in education. Recent work in prescriptive learning analytics (PLA) demonstrated a promising approach by augmenting predictive models with prescriptive capabilities of explainable artificial intelligence (XAI). Although theoretically sound, in practice, not all predictive features can be leveraged by XAI to prescribe useful feedback. It remains under-explored as to how to engineer such predictive features that can be used to prescribe personalised and actionable feedback. To address this, we proposed a learning activity-based approach to design features that are informative to both predictive and prescriptive performance in PLA. We conducted empirical evaluations of the quality of PLA-generated feedback compared to feedback written by experienced teachers in a large-scale university course. Four rubric criteria, including Readily Applicablility, Readability, Relational, and Specificity, were designed based on previous research. We found that: (i) By adopting learning activity-based features, PLA generates high quality feedback without sacrificing predictive performance; (ii) Most experienced teaching staff rated PLA-generated feedback as readily applicable to the course; and (iii) Compared to teacher-written feedback, the quality of PLA-generated feedback is consistently rated higher (with statistical significance) in all four rubric criteria by experienced teachers. All code is available via our GitHub repository (https://github.com/CoLAMZP/AIED-2024-AutoFeedback).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bit.ly/47VrcGh.

  2. 2.

    Scikit-learn package (2023), https://scikit-learn.org/stable/.

  3. 3.

    https://xgboost.readthedocs.io/en/stable/#.

  4. 4.

    https://bit.ly/3u7nziI.

  5. 5.

    https://bit.ly/42mVEHU.

  6. 6.

    https://bit.ly/4bnaJNL.

  7. 7.

    https://bit.ly/3u7nziI.

  8. 8.

    http://bit.ly/3Us9AhY.

References

  1. Ajjawi, R., Boud, D., Henderson, M., Molloy, E.: Improving feedback research in naturalistic settings. In: Henderson, M., Ajjawi, R., Boud, D., Molloy, E. (eds.) The Impact of Feedback in Higher Education, pp. 245–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25112-3_14

    Chapter  Google Scholar 

  2. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: International Conference on Machine Learning, pp. 115–123. PMLR (2013)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  4. Capuano, N., Rossi, D., Ströele, V., Caballé, S.: Explainable prediction of student performance in online courses. In: Guralnick, D., Auer, M.E., Poce, A. (eds.) TLIC 2023. LNCS, vol. 767, pp. 639–652. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-41637-8_52

    Chapter  Google Scholar 

  5. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  7. Dawson, P., et al.: What makes for effective feedback: staff and student perspectives. Assess. Eval. High. Educ. 44(1), 25–36 (2019)

    Article  MathSciNet  Google Scholar 

  8. Dawson, P., et al.: Technology and feedback design. In: Spector, M., Lockee, B., Childress, M. (eds.) Learning, Design, and Technology, pp. 1–45. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-17727-4_124-1

    Chapter  Google Scholar 

  9. Deeva, G., Bogdanova, D., Serral, E., Snoeck, M., De Weerdt, J.: A review of automated feedback systems for learners: classification framework, challenges and opportunities. Comput. Educ. 162, 104094 (2021)

    Article  Google Scholar 

  10. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  Google Scholar 

  11. Jang, Y., Choi, S., Jung, H., Kim, H.: Practical early prediction of students’ performance using machine learning and explainable AI. Educ. Inf. Technol. 27(9), 12855–12889 (2022)

    Article  Google Scholar 

  12. Jia, Q., Cui, J., Xiao, Y., Liu, C., Rashid, P., Gehringer, E.F.: All-in-one: multi-task learning bert models for evaluating peer assessments. arXiv preprint arXiv:2110.03895 (2021)

  13. Jia, Q., et al.: Insta-reviewer: a data-driven approach for generating instant feedback on students’ project reports. International Educational Data Mining Society (2022)

    Google Scholar 

  14. Karalar, H., Kapucu, C., Gürüler, H.: Predicting students at risk of academic failure using ensemble model during pandemic in a distance learning system. Int. J. Educ. Technol. High. Educ. 18(1), 63 (2021)

    Article  Google Scholar 

  15. Kasneci, E., et al.: Chatgpt for good? on opportunities and challenges of large language models for education. Learn. Individ. Differ. 103, 102274 (2023)

    Article  Google Scholar 

  16. van der Lee, C., Gatt, A., van Miltenburg, E., Krahmer, E.: Human evaluation of automatically generated text: current trends and best practice guidelines. Comput. Speech Lang. 67, 101151 (2021)

    Article  Google Scholar 

  17. Maier, U., Klotz, C.: Personalized feedback in digital learning environments: classification framework and literature review. Comput. Educ. Artif. Intell. 3, 100080 (2022)

    Article  Google Scholar 

  18. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

    Google Scholar 

  19. Pardo, A., et al.: Ontask: delivering data-informed, personalized learning support actions (2018)

    Google Scholar 

  20. Patel, C.R., Pandya, S.K., Sojitra, B.M.: Perspectives of chatgpt in pharmacology education, and research in health care: a narrative review. J. Pharmacol. Pharmacotherapeut. 0976500X231210427 (2023)

    Google Scholar 

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  22. Pinger, P., Rakoczy, K., Besser, M., Klieme, E.: Implementation of formative assessment-effects of quality of programme delivery on students’ mathematics achievement and interest. Assess. Educ. Principles Policy Pract. 25(2), 160–182 (2018)

    Article  Google Scholar 

  23. Ramaswami, G., Susnjak, T., Mathrani, A.: On developing generic models for predicting student outcomes in educational data mining. Big Data Cogn. Comput. 6(1), 6 (2022)

    Article  Google Scholar 

  24. Ramaswami, G., Susnjak, T., Mathrani, A.: Supporting students’ academic performance using explainable machine learning with automated prescriptive analytics. Big Data Cogn. Comput. 6(4), 105 (2022)

    Article  Google Scholar 

  25. Ramaswami, G., Susnjak, T., Mathrani, A.: Effectiveness of a learning analytics dashboard for increasing student engagement levels. J. Learn. Anal. 10(3), 115–134 (2023)

    Article  Google Scholar 

  26. Ryan, T., Henderson, M., Ryan, K., Kennedy, G.: Designing learner-centred text-based feedback: a rapid review and qualitative synthesis. Assess. Eval. High. Educ. 46(6), 894–912 (2021)

    Article  Google Scholar 

  27. Ryan, T., Henderson, M., Ryan, K., Kennedy, G.: Identifying the components of effective learner-centred feedback information. Teach. High. Educ. 28(7), 1565–1582 (2023)

    Article  Google Scholar 

  28. Sarsa, S., Denny, P., Hellas, A., Leinonen, J.: Automatic generation of programming exercises and code explanations using large language models. In: Proceedings of the 2022 ACM Conference on International Computing Education Research, vol. 1, pp. 27–43 (2022)

    Google Scholar 

  29. Shapley, L.S., et al.: A value for n-person games (1953)

    Google Scholar 

  30. Smith, B.I., Chimedza, C., Bührmann, J.H.: Individualized help for at-risk students using model-agnostic and counterfactual explanations. In: Education and Information Technologies, pp. 1–20 (2022)

    Google Scholar 

  31. Stasaski, K., Ramanarayanan, V.: Automatic feedback generation for dialog-based language tutors using transformer models and active learning. In: 34th Conference on Neural Information Processing Systems, Vancouver (2020)

    Google Scholar 

  32. Susnjak, T.: Beyond predictive learning analytics modelling and onto explainable artificial intelligence with prescriptive analytics and chatgpt. Int. J. Artif. Intell. Educ. 1–31 (2023)

    Google Scholar 

  33. Troussas, C., Papakostas, C., Krouska, A., Mylonas, P., Sgouropoulou, C.: Personalized feedback enhanced by natural language processing in intelligent tutoring systems. In: Frasson, C., Mylonas, P., Troussas, C. (eds.) ITS 2023. LNCS, pp. 667–677. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-32883-1_58

    Chapter  Google Scholar 

  34. Van Petegem, C., et al.: Pass/fail prediction in programming courses. J. Educ. Comput. Res. 61(1), 68–95 (2023)

    Article  Google Scholar 

  35. Varank, İ, et al.: Effectiveness of an online automated evaluation and feedback system in an introductory computer literacy course. Eurasia J. Math. Sci. Technol. Educ. 10(5), 395–404 (2014)

    Article  Google Scholar 

  36. Widyahastuti, F., Tjhin, V.U.: Predicting students performance in final examination using linear regression and multilayer perceptron. In: 2017 10th International Conference on Human System Interactions (HSI), pp. 188–192. IEEE (2017)

    Google Scholar 

  37. Winstone, N., Boud, D., Dawson, P., Heron, M.: From feedback-as-information to feedback-as-process: a linguistic analysis of the feedback literature. Assess. Eval. High. Educ. 47(2), 213–230 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanliang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Z., Sha, L., Tsai, YS., Gašević, D., Chen, G. (2024). Towards the Automated Generation of Readily Applicable Personalised Feedback in Education. In: Olney, A.M., Chounta, IA., Liu, Z., Santos, O.C., Bittencourt, I.I. (eds) Artificial Intelligence in Education. AIED 2024. Lecture Notes in Computer Science(), vol 14830. Springer, Cham. https://doi.org/10.1007/978-3-031-64299-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64299-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64298-2

  • Online ISBN: 978-3-031-64299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics