Abstract
PHCpack is a software package for polynomial homotopy continuation, which provides a robust path tracker [Telen, Van Barel, Verschelde, SISC 2020]. This tracker computes the radius of convergence of Newton’s method, estimates the distance to the nearest path, and then applies Padé approximants to predict the next point on the path. A priori step size control is less sensitive to finely tuned tolerances than a posteriori step size control, and is therefore robust. The Python interface phcpy is extended with a new step-by-step tracker and is applied to experiment with extrapolation methods to accurately locate the singular points at the end of solution paths.
Supported by the National Science Foundation under grant DMS 1854513.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Version 1.2.2 of alr, GNAT 12.2.1 and gprbuild 22.0.1.
References
Bliss, N., Verschelde, J.: The method of Gauss-Newton to compute power series solutions of polynomial homotopies. Linear Algebra Appl. 542, 569–588 (2018)
Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods. Studies in Computational Mathematics, vol. 2. North-Holland, Amsterdam (1991)
Cuyt, A., Wuytack, L.: Nonlinear Methods in Numerical Analysis. North-Holland, Elsevier Science Publishers, Amsterdam (1987)
Eröcal, B., Stein, W.: The Sage project: unifying free mathematical software to create a viable alternative to magma, maple, mathematica and MATLAB. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 12–27. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6_4
Fabry, E.: Sur les points singuliers d’une fonction donnée par son développement en série et l’impossibilité du prolongement analytique dans des cas très généraux. Annales scientifiques de l’École Normale Supérieure 13, 367–399 (1896)
Gao, T., Li, T.Y., Wu, M.: Algorithm 846: MixedVol: a software package for mixed-volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005)
Henrici, P.: An algorithm for analytic continuation. SIAM J. Numer. Anal. 3(1), 67–78 (1966)
Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating point arithmetic. In: 15th IEEE Symposium on Computer Arithmetic (Arith-15 2001), pp. 155–162. IEEE Computer Society (2001)
Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)
Joldes, M., Muller, J.-M., Popescu, V., Tucker, W.: CAMPARY: Cuda multiple precision arithmetic library and applications. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 232–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3_29
Joyner, D., Čertík, O., Meurer, A., Granger, B.E.: Open source computer algebra systems: SymPy. ACM Commun. Comput. Algebra 45(4), 225–234 (2011)
Kluyver, T., et al.: Jupyter notebooks–a publishing format for reproducible computational workflows. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in Academic Publishing: Players, Agents, and Agendas, pp. 87–90. IOS Press, Amsterdam (2016)
Kowalewski, C.: Acceleration de la convergence pour certaines suites a convergence logarithmique. In: de Bruin, M.G., van Rossum, H. (eds.) Padé Approximation and its Applications Amsterdam 1980. LNM, vol. 888, pp. 263–272. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0095592
Kuvychko, I.: Complexplorer. https://github.com/kuvychko/complexplorer
Mizutani, T., Takeda, A.: DEMiCs: a software package for computing the mixed volume via dynamic enumeration of all mixed cells. In: Stillman, M., Takayama, N., Verschelde, J. (eds.) Software for Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 148, pp. 59–79. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78133-4_5
Ojika, T.: Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear algebraic equations. J. Math. Anal. Appl. 123, 199–221 (1987)
Otto, J., Forbes, A., Verschelde, J.: Solving polynomial systems with phcpy. In: Proceedings of the 18th Python in Science Conference, pp. 563–582 (2019)
Sidi, A.: Practical Extrapolation Methods. Theory and Applications, Cambridge Monographs on Applied and Computational Mathematics, vol. 10. Cambridge University Press, Cambridge (2003)
Telen, S., Van Barel, M., Verschelde, J.: A robust numerical path tracking algorithm for polynomial homotopy continuation. SIAM J. Sci. Comput. 42(6), A3610–A3637 (2020)
Trefethen, L.N.: Approximation Theory and Approximation Practice. Extented edn. SIAM (2020)
Trefethen, L.N.: Numerical analytic continuation. Jpn. J. Ind. Appl. Math. 40(3), 1587–1636 (2023)
Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999). https://github.com/janverschelde/PHCpack
Verschelde, J.: Modernizing PHCpack through phcpy. In: de Buyl, P., Varoquaux, N. (eds.) Proceedings of the 6th European Conference on Python in Science (EuroSciPy 2013), pp. 71–76 (2014)
Verschelde, J.: Exporting Ada software Julia and Python. Ada User J. 43(1), 75–77 (2022)
Verschelde, J., Viswanathan, K.: Extrapolating on Taylor series solutions of homotopies with nearby poles. arXiv:2404.17681v1 [math.NA]. Accessed 26 Apr 2024
Verschelde, J., Viswanathan, K.: Locating the closest singularity in a polynomial homotopy. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2022. LNCS, vol. 13366, pp. 333–352. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14788-3_19
Wegert, E.: Visual Complex Functions: An Introduction with Phase Portraits. Birkhäuser (2012)
Weniger, E.: Nonlinear sequence transformations for the acceleration of convergence and the summation of series. Comput. Phys. Rep. 10, 189–371 (1989)
Wynn, P.: On a procrustean technique for the numerical transformation of slowly convergent sequences and series. Proc. Camb. Phil. Soc. 52, 663–672 (1956)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Verschelde, J., Viswanathan, K. (2024). Extrapolating Solution Paths of Polynomial Homotopies Towards Singularities with PHCpack and Phcpy. In: Buzzard, K., Dickenstein, A., Eick, B., Leykin, A., Ren, Y. (eds) Mathematical Software – ICMS 2024. ICMS 2024. Lecture Notes in Computer Science, vol 14749. Springer, Cham. https://doi.org/10.1007/978-3-031-64529-7_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-64529-7_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-64528-0
Online ISBN: 978-3-031-64529-7
eBook Packages: Computer ScienceComputer Science (R0)