Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extrapolating Solution Paths of Polynomial Homotopies Towards Singularities with PHCpack and Phcpy

  • Conference paper
  • First Online:
Mathematical Software – ICMS 2024 (ICMS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14749))

Included in the following conference series:

  • 327 Accesses

Abstract

PHCpack is a software package for polynomial homotopy continuation, which provides a robust path tracker [Telen, Van Barel, Verschelde, SISC 2020]. This tracker computes the radius of convergence of Newton’s method, estimates the distance to the nearest path, and then applies Padé approximants to predict the next point on the path. A priori step size control is less sensitive to finely tuned tolerances than a posteriori step size control, and is therefore robust. The Python interface phcpy is extended with a new step-by-step tracker and is applied to experiment with extrapolation methods to accurately locate the singular points at the end of solution paths.

Supported by the National Science Foundation under grant DMS 1854513.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Version 1.2.2 of alr, GNAT 12.2.1 and gprbuild 22.0.1.

References

  1. Bliss, N., Verschelde, J.: The method of Gauss-Newton to compute power series solutions of polynomial homotopies. Linear Algebra Appl. 542, 569–588 (2018)

    Article  MathSciNet  Google Scholar 

  2. Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods. Studies in Computational Mathematics, vol. 2. North-Holland, Amsterdam (1991)

    Google Scholar 

  3. Cuyt, A., Wuytack, L.: Nonlinear Methods in Numerical Analysis. North-Holland, Elsevier Science Publishers, Amsterdam (1987)

    Google Scholar 

  4. Eröcal, B., Stein, W.: The Sage project: unifying free mathematical software to create a viable alternative to magma, maple, mathematica and MATLAB. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 12–27. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6_4

    Chapter  Google Scholar 

  5. Fabry, E.: Sur les points singuliers d’une fonction donnée par son développement en série et l’impossibilité du prolongement analytique dans des cas très généraux. Annales scientifiques de l’École Normale Supérieure 13, 367–399 (1896)

    Article  MathSciNet  Google Scholar 

  6. Gao, T., Li, T.Y., Wu, M.: Algorithm 846: MixedVol: a software package for mixed-volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005)

    Article  MathSciNet  Google Scholar 

  7. Henrici, P.: An algorithm for analytic continuation. SIAM J. Numer. Anal. 3(1), 67–78 (1966)

    Article  MathSciNet  Google Scholar 

  8. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating point arithmetic. In: 15th IEEE Symposium on Computer Arithmetic (Arith-15 2001), pp. 155–162. IEEE Computer Society (2001)

    Google Scholar 

  9. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)

    Article  Google Scholar 

  10. Joldes, M., Muller, J.-M., Popescu, V., Tucker, W.: CAMPARY: Cuda multiple precision arithmetic library and applications. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 232–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3_29

    Chapter  Google Scholar 

  11. Joyner, D., Čertík, O., Meurer, A., Granger, B.E.: Open source computer algebra systems: SymPy. ACM Commun. Comput. Algebra 45(4), 225–234 (2011)

    Google Scholar 

  12. Kluyver, T., et al.: Jupyter notebooks–a publishing format for reproducible computational workflows. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in Academic Publishing: Players, Agents, and Agendas, pp. 87–90. IOS Press, Amsterdam (2016)

    Google Scholar 

  13. Kowalewski, C.: Acceleration de la convergence pour certaines suites a convergence logarithmique. In: de Bruin, M.G., van Rossum, H. (eds.) Padé Approximation and its Applications Amsterdam 1980. LNM, vol. 888, pp. 263–272. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0095592

    Chapter  Google Scholar 

  14. Kuvychko, I.: Complexplorer. https://github.com/kuvychko/complexplorer

  15. Mizutani, T., Takeda, A.: DEMiCs: a software package for computing the mixed volume via dynamic enumeration of all mixed cells. In: Stillman, M., Takayama, N., Verschelde, J. (eds.) Software for Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 148, pp. 59–79. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78133-4_5

    Chapter  Google Scholar 

  16. Ojika, T.: Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear algebraic equations. J. Math. Anal. Appl. 123, 199–221 (1987)

    Google Scholar 

  17. Otto, J., Forbes, A., Verschelde, J.: Solving polynomial systems with phcpy. In: Proceedings of the 18th Python in Science Conference, pp. 563–582 (2019)

    Google Scholar 

  18. Sidi, A.: Practical Extrapolation Methods. Theory and Applications, Cambridge Monographs on Applied and Computational Mathematics, vol. 10. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  19. Telen, S., Van Barel, M., Verschelde, J.: A robust numerical path tracking algorithm for polynomial homotopy continuation. SIAM J. Sci. Comput. 42(6), A3610–A3637 (2020)

    Article  MathSciNet  Google Scholar 

  20. Trefethen, L.N.: Approximation Theory and Approximation Practice. Extented edn. SIAM (2020)

    Google Scholar 

  21. Trefethen, L.N.: Numerical analytic continuation. Jpn. J. Ind. Appl. Math. 40(3), 1587–1636 (2023)

    Article  MathSciNet  Google Scholar 

  22. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999). https://github.com/janverschelde/PHCpack

  23. Verschelde, J.: Modernizing PHCpack through phcpy. In: de Buyl, P., Varoquaux, N. (eds.) Proceedings of the 6th European Conference on Python in Science (EuroSciPy 2013), pp. 71–76 (2014)

    Google Scholar 

  24. Verschelde, J.: Exporting Ada software Julia and Python. Ada User J. 43(1), 75–77 (2022)

    Google Scholar 

  25. Verschelde, J., Viswanathan, K.: Extrapolating on Taylor series solutions of homotopies with nearby poles. arXiv:2404.17681v1 [math.NA]. Accessed 26 Apr 2024

  26. Verschelde, J., Viswanathan, K.: Locating the closest singularity in a polynomial homotopy. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2022. LNCS, vol. 13366, pp. 333–352. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14788-3_19

    Chapter  Google Scholar 

  27. Wegert, E.: Visual Complex Functions: An Introduction with Phase Portraits. Birkhäuser (2012)

    Google Scholar 

  28. Weniger, E.: Nonlinear sequence transformations for the acceleration of convergence and the summation of series. Comput. Phys. Rep. 10, 189–371 (1989)

    Article  Google Scholar 

  29. Wynn, P.: On a procrustean technique for the numerical transformation of slowly convergent sequences and series. Proc. Camb. Phil. Soc. 52, 663–672 (1956)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Verschelde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verschelde, J., Viswanathan, K. (2024). Extrapolating Solution Paths of Polynomial Homotopies Towards Singularities with PHCpack and Phcpy. In: Buzzard, K., Dickenstein, A., Eick, B., Leykin, A., Ren, Y. (eds) Mathematical Software – ICMS 2024. ICMS 2024. Lecture Notes in Computer Science, vol 14749. Springer, Cham. https://doi.org/10.1007/978-3-031-64529-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64529-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64528-0

  • Online ISBN: 978-3-031-64529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics