Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using the Intensity Values Obtained from Terrestrial Laser Scanner for Monitoring the Effects of Plant Disease: The Case Study of Gorgognolo (Italy)

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

The continuous growth of agricultural production requires efficient strategies to manage the cultivation activities and ensure a high-quality standard for the food products. In this regard, the increased circulation of pathogens, also exacerbated by the consequences of climate change, represents a threat for environmental and agricultural assets. By the way of example, in recent years, the Xylella fastidiosa (Xf) bacterium has caused significant damage to the olive growing in the Apulia region, located in the south of Italy, with a consequent relevant economic impact. Geomatic methodologies for the acquisition and processing of ground spatial data can play a crucial role in the prompt identification of the effects of potentially harmful phenomena, such as Xf is, thus helping to develop effective countermeasures. This work presents the results of the analysis of a high-resolution three-dimensional dataset acquired with a Terrestrial Laser Scanner, which is generally used to reconstruct the shape of objects and structures. In this work, the intensity parameter associated to the point cloud has been investigated to infer information on the progression of the plant disease on a set of olive trees located in the Salento peninsula (Italy). These preliminary results could constitute the basis to design a strategy useful to monitor the effects of the spreading of Xf on medium-scale areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciervo, M., Scortichini, M.: A decade of monitoring surveys for <scp> Xylella fastidiosa </scp> subsp. pauca in olive groves in Apulia (Italy) reveals a low incidence of the bacterium in the demarcated areas. J. Phytopathol. 172 (2024). https://doi.org/10.1111/jph.13272

  2. Ciervo, M.: Il disseccamento degli olivi in Puglia, evidenze, contraddizioni, anomalie, scenari. Società Geografica Italiana (2020)

    Google Scholar 

  3. Martelli, G.P.: Il disseccamento rapido dell’olivo: stato delle conoscenze

    Google Scholar 

  4. Gualano, S., Tarantino, E., Santoro, F., Valentini, F., Dongiovanni, N., Maria D’onghia, A.: ASITA 2014 Analisi assistita da immagini aeree ad elevata risoluzione geometrica per il riconoscimento del Complesso del Disseccamento Rapido dell’Olivo associato al batterio Xylella fastidiosa in Puglia

    Google Scholar 

  5. Husin, N.A., Khairunniza-Bejo, S., Abdullah, A.F., Kassim, M.S.M., Ahmad, D., Aziz, M.H.A.: Classification of basal stem rot disease in oil palm plantations using terrestrial laser scanning data and machine learning. Agronomy 10, (2020). https://doi.org/10.3390/agronomy10111624

  6. Zhu, X., Wang, T., Darvishzadeh, R., Skidmore, A.K., Niemann, K.O.: 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction. ISPRS J. Photogramm. Remote Sens. 110, 14–23 (2015). https://doi.org/10.1016/J.ISPRSJPRS.2015.10.001

    Article  Google Scholar 

  7. Baiocchi, V., et al.: First geomatic restitution of the sinkhole known as ‘Pozzo del Merro’ (Italy), with the integration and comparison of ‘classic’ and innovative geomatic techniques. Environ. Earth Sci. 77 (2018). https://doi.org/10.1007/s12665-018-7244-6

  8. Liang, X., et al.: Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 115, 63–77 (2016). https://doi.org/10.1016/j.isprsjprs.2016.01.006

  9. Tan, K., Zhang, W., Shen, F., Cheng, X.: Investigation of TLS intensity data and distance measurement errors from target specular reflections. Remote Sens. (Basel) 10, 1077 (2018). https://doi.org/10.3390/rs10071077

  10. Peppe, P.J., et al.: High-resolution geomatic and geophysical techniques integrated with chemical analyses for the characterization of a Roman wall. J. Cult. Herit. 17, 141–150 (2016). https://doi.org/10.1016/j.culher.2015.06.005

    Article  Google Scholar 

  11. Kashani, A.G., Olsen, M.J., Parrish, C.E., Wilson, N.: A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration (2015). https://doi.org/10.3390/s151128099

    Article  Google Scholar 

  12. Tan, K., Chen, J., Zhang, W., Liu, K., Tao, P., Cheng, X.: Estimation of soil surface water contents for intertidal mudflats using a near-infrared long-range terrestrial laser scanner. ISPRS J. Photogramm. Remote Sens. 159, 129–139 (2020). https://doi.org/10.1016/j.isprsjprs.2019.11.003

    Article  Google Scholar 

  13. Acciani, C., De Gennaro, B.C., Fucilli, V., Roselli Luigi: Valutazione dell’impatto economico e paesaggistico causato da Xylella fastidiosa sull’olivicoltura del Salento (2015)

    Google Scholar 

  14. Tan, K., Cheng, X.: Distance effect correction on TLS intensity data using naturally homogeneous targets. IEEE Geosci. Remote Sens. Lett. 17, 499–503 (2020). https://doi.org/10.1109/LGRS.2019.2922226

    Article  Google Scholar 

  15. Wilkes, P., et al.: Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sens Environ. 196, 140–153 (2017). https://doi.org/10.1016/j.rse.2017.04.030

  16. Jackson, G., Lepere, G.: White Paper Inside Trimble TX8-Deep Dive into Lightning Technology

    Google Scholar 

  17. Brede, B., et al.: Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR. Remote Sens Environ. 233 (2019). https://doi.org/10.1016/j.rse.2019.111355

  18. Voegtle, T., Schwab, I., Landes, T.: Influences of different materials on the measurements of a terrestrial laser scanner (TLS). In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2008)

    Google Scholar 

  19. Tan, K., Zhang, W., Dong, Z., Cheng, X., Cheng, X.: Leaf and wood separation for individual trees using the intensity and density data of terrestrial laser scanners. IEEE Trans. Geosci. Remote Sens. 59, 7038–7050 (2021). https://doi.org/10.1109/TGRS.2020.3032167

    Article  Google Scholar 

  20. Escolà, A., et al.: Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds. Precis Agric. 18 (2017). https://doi.org/10.1007/s11119-016-9474-5

  21. Giménez-Romero, À., Moralejo, E., Matías, M.A.: A compartmental model for Xylella fastidiosa diseases with explicit vector seasonal dynamics. Phytopathology 113, 1686–1696 (2023). https://doi.org/10.1094/PHYTO-11-22-0428-V

    Article  Google Scholar 

  22. Pitkänen, T.P., Piri, T., Lehtonen, A., Peltoniemi, M.: Detecting structural changes induced by Heterobasidion root rot on Scots pines using terrestrial laser scanning. For Ecol. Manage. 492 (2021). https://doi.org/10.1016/j.foreco.2021.119239

Download references

Acknowledgements

The authors want to thank Dr. Pietro Sumeraro of ARIF PUGLIA (Agenzia Regionale Attività Irrigue e Forestali) for supporting the logistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eufemia Tarantino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pagano, N., Tarantino, E., Sonnessa, A. (2024). Using the Intensity Values Obtained from Terrestrial Laser Scanner for Monitoring the Effects of Plant Disease: The Case Study of Gorgognolo (Italy). In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14819. Springer, Cham. https://doi.org/10.1007/978-3-031-65282-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65282-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65281-3

  • Online ISBN: 978-3-031-65282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics