Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Formal Verification Techniques for Post-quantum Cryptography: A Systematic Review

  • Conference paper
  • First Online:
Engineering of Complex Computer Systems (ICECCS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14784 ))

Included in the following conference series:

  • 104 Accesses

Abstract

In the quantum computing era, the imperative role of post-quantum cryptography in securing digital communications has led to the development of computer-aided cryptography verification tools. These tools simplify the verification of post-quantum cryptography primitives and protocols, alleviating the challenges associated with manual proofs. This paper systematically reviews research in four main areas: quantum computing, post-quantum cryptography, cryptanalysis, and verification, establishing a foundation for future research. Emphasising the significance of challenges in post-quantum cryptography, we outline the current state of research on cryptography primitives and protocols. Categorising state-of-the-art computer-aided cryptography verification tools based on assumptions, models, and application levels, our analysis delves into each tool’s features, including modelling, adversary models, security properties, validation, and an in-depth analysis of their limitations. This comprehensive analysis offers insights into the nexus of post-quantum cryptography and computer-aided verification. Concluding with recommendations for researchers and practitioners, this paper explores potential future research directions.

Y. Xu and Z. Li—are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Formal verification approaches exist that are not game based, for instance, a type system that tracks whether values are uniform and fresh, or adversarial controlled, is proposed and used for classical cryptographic primitive verification [36, 41].

References

  1. Proverif. https://bblanche.gitlabpages.inria.fr/proverif/

  2. The squirrel prover. https://github.com/squirrel-prover/squirrel-prover/

  3. Tamarin prover. https://tamarin-prover.com/

  4. Abinaya, M., Prabakeran, S.: Lightweight block cipher for resource constrained IoT environment-an survey, performance, cryptanalysis and research challenges. In: ICICNIS, pp. 347–365 (2022)

    Google Scholar 

  5. Abohashima, Z., Elhosen, M., Houssein, E.H., Mohamed, W.M.: Classification with quantum machine learning: a survey. arXiv preprint arXiv:2006.12270 (2020)

  6. Alnahawi, N., Müller, J., Oupický, J., Wiesmaier, A.: SoK: post-quantum TLS Handshake. Cryptology ePrint Archive (2023)

    Google Scholar 

  7. Avalle, M., Pironti, A., Sisto, R.: Formal verification of security protocol implementations: a survey. Formal Aspects Comput. 26, 99–123 (2014)

    Article  Google Scholar 

  8. Baelde, D., Delaune, S., Jacomme, C., Koutsos, A., Moreau, S.: An interactive prover for protocol verification in the computational model. In: S &P (2021)

    Google Scholar 

  9. Bagane, P.A., Kotrappa, S.: Bibliometric survey for cryptanalysis of block ciphers towards cyber security. Library Philosophy and Practice, pp. 1–18 (2020)

    Google Scholar 

  10. Bana, G., Comon-Lundh, H.: A computationally complete symbolic attacker for equivalence properties. In: CCS, pp. 609–620 (2014)

    Google Scholar 

  11. Barbosa, M., et al.: SOK: computer-aided cryptography. In: S &P (2021)

    Google Scholar 

  12. Barbosa, M., et al.: EasyPQC: verifying post-quantum cryptography. In: CCS, pp. 2564–2586 (2021)

    Google Scholar 

  13. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y.: Computational indistinguishability logic. In: CCS, pp. 375–386 (2010)

    Google Scholar 

  14. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.: EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10082-1_6

    Chapter  Google Scholar 

  15. Barthe, G., Fan, X., Gancher, J., Grégoire, B., Jacomme, C., Shi, E.: Symbolic proofs for lattice-based cryptography. In: CCS, pp. 538–555 (2018)

    Google Scholar 

  16. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security proofs for the working cryptographer. In: Annual Cryptology Conference (2011)

    Google Scholar 

  17. Barthe, G., Grégoire, B., Lakhnech, Y., Zanella Béguelin, S.: Beyond provable security verifiable IND-CCA security of OAEP. In: Cryptographers’ Track at the RSA Conference, pp. 180–196 (2011)

    Google Scholar 

  18. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic proofs. In: POPL, pp. 90–101 (2009)

    Google Scholar 

  19. Barthe, G., Hedin, D., Béguelin, S.Z., Grégoire, B., Heraud, S.: A machine-checked formalization of sigma-protocols. In: CSF, pp. 246–260 (2010)

    Google Scholar 

  20. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint Archive, Paper 2004/331 (2004)

    Google Scholar 

  21. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: EUROCRYPT 2006, pp. 409–426 (2006)

    Google Scholar 

  22. Blanchet, B.: CryptoVerif: a computationally-sound security protocol verifier. Technical Report (2017)

    Google Scholar 

  23. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: ASIACRYPT, pp. 41–69 (2011)

    Google Scholar 

  24. Chareton, C., Bardin, S., Lee, D., Valiron, B., Vilmart, R., Xu, Z.: Formal methods for quantum programs: a survey. arXiv preprint arXiv:2109.06493 (2021)

  25. Ciulei, A.T., Crețu, M.C., Simion, E.: Preparation for post-quantum era: a survey about blockchain schemes from a post-quantum perspective. Cryptology ePrint Archive (2022)

    Google Scholar 

  26. Corin, R., den Hartog, J.: A probabilistic hoare-style logic for game-based cryptographic proofs (extended version). Cryptology ePrint Archive, Paper 2005/467 (2005). https://eprint.iacr.org/2005/467

  27. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Towards automated proofs for asymmetric encryption schemes in the random oracle model. In: CCS, pp. 371–380 (2008)

    Google Scholar 

  28. Cremers, C., Fontaine, C., Jacomme, C.: A logic and an interactive prover for the computational post-quantum security of protocols. In: S &P, pp. 125–141 (2022)

    Google Scholar 

  29. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory 29(2), 198–208 (1983)

    Article  MathSciNet  Google Scholar 

  30. Fernandez-Carames, T.M., Fraga-Lamas, P.: Towards post-quantum blockchain: a review on blockchain cryptography resistant to quantum computing attacks. IEEE Access 8, 21091–21116 (2020)

    Article  Google Scholar 

  31. Gagné, M., Lafourcade, P., Lakhnech, Y.: Automated security proofs for almost-universal hash for MAC verification. In: ESORICS, vol. 8134, pp. 291–308 (2013)

    Google Scholar 

  32. Gagné, M., Lafourcade, P., Lakhnech, Y., Safavi-Naini, R.: Automated security proof for symmetric encryption modes. In: Annual Asian Computing Science Conference, vol. 5913, pp. 39–53 (2009)

    Google Scholar 

  33. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. IACR Cryptol. ePrint Arch. 2005, 181 (2005)

    Google Scholar 

  34. Hasija, T., Ramkumar, K., Kaur, A., Mittal, S., Singh, B.: A survey on NIST selected third round candidates for post quantum cryptography. In: ICCES (2022)

    Google Scholar 

  35. Herman, D., et al.: A survey of quantum computing for finance. arXiv:2201.02773 (2022)

  36. Hoang, V.T., Katz, J., Malozemoff, A.J.: Automated analysis and synthesis of authenticated encryption schemes. IACR Cryptol. ePrint Arch, p. 624 (2015). http://eprint.iacr.org/2015/624

  37. Hofer-Schmitz, K., Stojanović, B.: Towards formal verification of IoT protocols: a review. Comput. Netw. 174, 107233 (2020)

    Article  Google Scholar 

  38. Kfoury, A.: Hoare logic and variations: probabilistic, relational, probabilistic+ relational (2018). https://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Hoare_Logic/main-post.pdf

  39. Kumari, S., Singh, M., Singh, R., Tewari, H.: Post-quantum cryptography techniques for secure communication in resource-constrained internet of things devices: a comprehensive survey. Softw. Pract. Experience 52(10), 2047–2076 (2022)

    Google Scholar 

  40. Liu, J., Liu, Z.: A survey on security verification of blockchain smart contracts. IEEE Access 7, 77894–77904 (2019)

    Article  Google Scholar 

  41. Malozemoff, A.J., Katz, J., Green, M.D.: Automated analysis and synthesis of block-cipher modes of operation. IACR Cryptol. ePrint Arch, p. 774 (2014)

    Google Scholar 

  42. Mnkash, S.H.: Survey of different cryptography methods. Resmilitaris 12(2), 495–516 (2022)

    Google Scholar 

  43. NIST: Round 4 submissions - post-quantum cryptography: CSRC. https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions. Accessed 20 Oct 2023

  44. NIST: selected algorithms 2022 - post-quantum cryptography: CSRC. https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022. Accessed 20 Oct 2023

  45. Parida, N.K., Jatoth, C., Reddy, V.D., Hussain, M.M., Faizi, J.: Post-quantum distributed ledger technology: a systematic survey. Sci. Rep. 13(1), 20729 (2023)

    Google Scholar 

  46. Ramezani, S.B., Sommers, A., Manchukonda, H.K., Rahimi, S., Amirlatifi, A.: Machine learning algorithms in quantum computing: a survey. In: IJCNN (2020)

    Google Scholar 

  47. Shannon, K., Towe, E., Tonguz, O.K.: On the use of quantum entanglement in secure communications: a survey. arXiv preprint arXiv:2003.07907 (2020)

  48. Shim, K.A.: A survey of public-key cryptographic primitives in wireless sensor networks. IEEE Commun. Surv. Tutorials 18(1), 577–601 (2015)

    Article  Google Scholar 

  49. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. IACR Cryptol. ePrint Arch, p. 332 (2004)

    Google Scholar 

  50. Sieber, K.: The foundations of program verification (2013)

    Google Scholar 

  51. Song, F.: A note on quantum security for post-quantum cryptography. In: Post-Quantum Cryptography, pp. 246–265 (2014)

    Google Scholar 

  52. Sosnowski, M., et al.: The performance of post-quantum TLS 1.3. In: CoNEXT (2023)

    Google Scholar 

  53. Tan, T.G., Szalachowski, P., Zhou, J.: Challenges of post-quantum digital signing in real-world applications: a survey. Int. J. Inf. Secur. 21(4), 937–952 (2022)

    Article  Google Scholar 

  54. Wang, A., Xiao, D., Yu, Y.: Lattice-based cryptosystems in standardisation processes: a survey. IET Inf. Secur. 17(2), 227–243 (2023)

    Article  Google Scholar 

  55. Zanella-Béguelin, S., Barthe, G., Grégoire, B., Olmedo, F.: Formally certifying the security of digital signature schemes. In: S &P, pp. 237–250 (2009)

    Google Scholar 

  56. Zeydan, E., Turk, Y., Aksoy, B., Ozturk, S.B.: Recent advances in post-quantum cryptography for networks: a survey. In: MobiSecServ, pp. 1–8 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naipeng Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Li, Z., Dong, N., Kuchta, V., Hou, Z., Liu, D. (2025). Formal Verification Techniques for Post-quantum Cryptography: A Systematic Review. In: Bai, G., Ishikawa, F., Ait-Ameur, Y., Papadopoulos, G.A. (eds) Engineering of Complex Computer Systems. ICECCS 2024. Lecture Notes in Computer Science, vol 14784 . Springer, Cham. https://doi.org/10.1007/978-3-031-66456-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66456-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66455-7

  • Online ISBN: 978-3-031-66456-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics