Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancing Predictive Accuracy in Embryo Implantation: The Bonna Algorithm and its Clinical Implications

  • Conference paper
  • First Online:
Artificial Intelligence in Healthcare (AIiH 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14976))

Included in the following conference series:

  • 319 Accesses

Abstract

In the context of in vitro fertilization (IVF), selecting embryos for transfer is critical in determining pregnancy outcomes, with implantation as the essential first milestone for a successful pregnancy. This study introduces the Bonna algorithm, an advanced deep-learning framework engineered to predict embryo implantation probabilities. The algorithm employs a sophisticated integration of machine-learning techniques, utilizing MobileNetV2 for pixel and context embedding, a custom Pix2Pix model for precise segmentation, and a Vision Transformer for additional depth in embedding. MobileNetV2 was chosen for its robust feature extraction capabilities, focusing on textures and edges. The custom Pix2Pix model is adapted for precise segmentation of significant biological features such as the zona pellucida and blastocyst cavity. The Vision Transformer adds a global perspective, capturing complex patterns not apparent in local image segments. Tested on a dataset of images of human blastocysts collected from Ukraine, Israel, and Spain, the Bonna algorithm was rigorously validated through 10-fold cross-validation to ensure its robustness and reliability. It demonstrates superior performance with a mean area under the receiver operating characteristic curve (AUC) of 0.754, significantly outperforming existing models. The study not only advances predictive accuracy in embryo selection but also highlights the algorithm’s clinical applicability due to reliable confidence reporting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mastenbroek, S., et al.: Embryo selection in IVF. Hum. Reprod. 26(5), 964–966 (2011). https://doi.org/10.1093/humrep/der050

    Article  Google Scholar 

  2. Maheshwari, A., McLernon, D., Bhattacharya, S.: Cumulative live birth rate: time for a consensus? Hum. Reprod. 30(12), 2703–2707 (2015). https://doi.org/10.1093/humrep/dev263

    Article  Google Scholar 

  3. Van den Abbeel, E., et al.: Association between blastocyst morphology and outcome of single-blastocyst transfer. Reprod. Biomed. Online 27(4), 353–361 (2013). https://doi.org/10.1016/j.rbmo.2013.07.006. Epub 2013 Jul 18. PMID: 23953585

  4. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum. Reprod. 26(6), 1270–1283 (2011). https://doi.org/10.1093/humrep/der037

  5. Khosravi, P., Kazemi, E., Zhan, Q., et al.: Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit. Med. 2, 21 (2019). https://doi.org/10.1038/s41746-019-0096-y

  6. Fordham, D.E., et al.: Embryologist agreement when assessing blastocyst implantation probability: is data-driven prediction the solution to embryo assessment subjectivity? Hum. Reprod. 37(10), 2275–2290 (2022). https://doi.org/10.1093/humrep/deac171

    Article  Google Scholar 

  7. Gardner, D.K., et al.: Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73(6), 1155–1158 (2000). https://doi.org/10.1016/S0015-0282(00)00518-5

    Article  Google Scholar 

  8. Hernández-Vargas, P., Muñoz, M., Domínguez, F.: Identifying biomarkers for predicting successful embryo implantation: applying single to multi-omics to improve reproductive outcomes. Hum. Reprod. Update 26(2), 264–301 (2020). https://doi.org/10.1093/humupd/dmz042

    Article  Google Scholar 

  9. Munné, S., et al.: Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil. Steril. 112(6), 1071–1079.e7 (2019). https://doi.org/10.1016/j.fertnstert.2019.07.1346

  10. Sandler, M., et al.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  11. Isola, P., et al.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). https://arxiv.org/abs/1611.07004

  12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021). https://openreview.net/forum?id=YicbFdNTTy

  13. Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach. Learn. Res. 9, 371–421 (2008). http://jmlr.org/papers/v9/shafer08a.html

  14. Theilgaard Lassen, J., et al.: Development and validation of deep learning based embryo selection across multiple days of transfer. Sci. Rep. 13(1), 4235 (2023). https://doi.org/10.1038/s41598-023-31136-3

    Article  Google Scholar 

  15. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  16. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC (2012). https://www.crcpress.com/Ensemble-Methods-Foundations-and-Algorithms/Zhou/p/book/9781439830031

  17. Montag, M., Kajhøj, T.Q., Agerholm, I.E.: Description of time-lapse systems: embryoscope™. In: Meseguer, M. (ed.) Time-Lapse Microscopy in In-Vitro Fertilization. chapter 11, pp. 11–30. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  18. Zegers-Hochschild, F., et al.: The international glossary on infertility and fertility care, 2017. Fertil. Steril. 108(3), 393–406 (2017). https://doi.org/10.1016/j.fertnstert.2017.06.005

    Article  Google Scholar 

  19. Sayed, S., et al.: Time-lapse imaging derived morphokinetic variables reveal association with implantation and live birth following in vitro fertilization: a retrospective study using data from transferred human embryos. PLoS ONE 15(11), e0242377 (2020). https://doi.org/10.1371/journal.pone.0242377

    Article  Google Scholar 

  20. Maurício, J., Domingues, I., Bernardino, J.: Comparing vision transformers and convolutional neural networks for image classification: a literature review. Appl. Sci. 13, 5521 (2023). https://doi.org/10.3390/app13095521

    Article  Google Scholar 

  21. Singh, D., Singh, B.: Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 97(Part B), 105524 (2020). https://doi.org/10.1016/j.asoc.2019.105524

    Article  Google Scholar 

  22. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  23. Garcia-Garcia, A., et al.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857 (2017). https://arxiv.org/abs/1704.06857

  24. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR (1994)

    Google Scholar 

  25. Börnfors, F., Klint, E.: Data Augmentation to Increase Multi-Site Robustness for Convolutional Neural Networks - A case study on MRI segmentation of target and organs at risk for prostate cancer (2019). ISSN 1404-6342. Student Paper

    Google Scholar 

  26. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on Machine Learning - vol. 48, pp. 1050–1059, New York, NY, USA (2016). JMLR.org

    Google Scholar 

  27. Hajian-Tilaki, K.: Receiver operating characteristic (roc) curve analysis for medical diagnostic test evaluation. Caspian J. Int. Med. 4(2), 627–635 (2013). PMID: 24009950; PMCID: PMC3755824

    Google Scholar 

  28. Liu, Y., et al.: Time-lapse deselection model for human day 3 in vitro fertilization embryos: the combination of qualitative and quantitative measures of embryo growth. Fertil. Steril. 105(3), 656–662.e1 (2016). https://doi.org/10.1016/j.fertnstert.2015.11.003. Epub 2015 Nov 23

  29. Loewke, K., et al.: Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos. Fertil. Steril. 117(3), 528–535 (2022). https://doi.org/10.1016/j.fertnstert.2021.11.022

    Article  Google Scholar 

  30. Enatsu, N., et al.: A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation. Reprod. Med. Biol. 21(1), e12443 (2022). https://doi.org/10.1002/rmb2.12443

    Article  Google Scholar 

  31. Erlich, I., et al.: Pseudo contrastive labeling for predicting IVF embryo developmental potential. Sci. Rep. 12, 2488 (2022). https://doi.org/10.1038/s41598-022-06336-y

    Article  Google Scholar 

  32. Diakiw, S.M., et al.: Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Hum. Reprod. 37(8), 1746–1759 (2022). https://doi.org/10.1093/humrep/deac131

    Article  Google Scholar 

  33. Tran, D., et al.: Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum. Reprod. 34(6), 1011–1018 (2019). https://doi.org/10.1093/humrep/dez064

    Article  Google Scholar 

  34. Weiss, T., et al.: Interpretable deep-learning unveils structure-property relationships in polybenzenoid hydrocarbons. ChemRxiv (2022). This content is a preprint and has not been peer-reviewed

    Google Scholar 

  35. Bronstein, M.: The road to biology 2.0 will pass through black box data. Towards Data Science (2024). https://towardsdatascience.com/the-road-to-biology-2-0-will-pass-through-black-box-data-bbd00fabf959. Accessed 15 Apr 2024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Silver .

Editor information

Editors and Affiliations

Ethics declarations

The developed algorithm has potential for future commercial applications by an entity employing the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rave, G., Fordham, D.E., Bronstein, A.M., Silver, D.H. (2024). Enhancing Predictive Accuracy in Embryo Implantation: The Bonna Algorithm and its Clinical Implications. In: Xie, X., Styles, I., Powathil, G., Ceccarelli, M. (eds) Artificial Intelligence in Healthcare. AIiH 2024. Lecture Notes in Computer Science, vol 14976. Springer, Cham. https://doi.org/10.1007/978-3-031-67285-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67285-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67284-2

  • Online ISBN: 978-3-031-67285-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics