Abstract
Tabular logics have been studied since the sixties, while the notion of pretabular (PT) variety was firstly introduced in the seventies by A.V. Kuznetsov and L. Maksimova, for Heyting algebras. A variety is tabular whenever it is generated by one finite algebra. A variety \(\mathbb {L}\) is PT whenever \(\mathbb {L}\) is not tabular but every variety \(\mathbb {M}\subsetneq \mathbb {L}\) is tabular. In this paper we study the same notion for the case of MTL-algebras. We show that a variety of MTL-algebras is PT if and only if it is generated by each of its infinite chains, and we study some general properties of PT varieties of MTL-algebras. Also, we provide a full classification of tabular and PT varieties of BL and WNM-algebras.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In [5, Definition 7] the first disjunct of (F) is written incorrectly.
References
Aglianò, P., Montagna, F.: Varieties of BL-algebras I: general properties. J. Pure Appl. Algebra 181(2–3), 105–129 (2003). https://doi.org/10.1016/S0022-4049(02)00329-8
Aglianò, P., Ugolini, S.: Strictly join irreducible varieties of residuated lattices. J. Log. Comput. 32(1), 32–64 (2021). https://doi.org/10.1093/logcom/exab059
Aguzzoli, S., Bianchi, M.: Single chain completeness and some related properties. Fuzzy Sets Syst. 301, 51–63 (2016). https://doi.org/10.1016/j.fss.2016.03.008
Aguzzoli, S., Bianchi, M.: Minimally many-valued extensions of the monoidal t-norm based logic MTL. In: Petrosino, A., Loia, V., Pedrycz, W. (eds.) WILF 2016. LNCS (LNAI), vol. 10147, pp. 106–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52962-2_9
Aguzzoli, S., Bianchi, M.: On linear varieties of MTL-algebras. Soft. Comput. 23(7), 2129–2146 (2019). https://doi.org/10.1007/s00500-018-3423-3
Aguzzoli, S., Bianchi, M.: Strictly join irreducible varieties of BL-algebras: the missing pieces. Fuzzy Sets Syst. 418, 84–100 (2021). https://doi.org/10.1016/j.fss.2020.12.008
Aguzzoli, S., Bianchi, M.: amalgamation property for some varieties of BL-algebras generated by one finite set of BL-chains with finitely many components. In: Glück, R., Santocanale, L., Winter, M. (eds.) Relational and Algebraic Methods in Computer Science, pp. 1–16. Springer, Cham (2023), https://doi.org/10.1007/978-3-031-28083-2_1
Aguzzoli, S., Bianchi, M., Valota, D.: The classification of all the subvarieties of \(\mathbb{DNMG}\). In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 641, pp. 12–24. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66830-7_2
Aguzzoli, S., Bova, S., Valota, D.: Free weak nilpotent minimum algebras. Soft. Comput. 21, 79–95 (2017). https://doi.org/10.1007/s00500-016-2340-6
Baker, K.: Finite equational bases for finite algebras in a congruence-distributive equational class. Adv. Math. 24(3), 207–243 (1977). https://doi.org/10.1016/0001-8708(77)90056-1
Bianchi, M.: Strictly join irreducible elements in the lattice of varieties of BL-algebras. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings. IEEE (2018). https://doi.org/10.1109/SSCI.2017.8285361
Bianchi, M., Montagna, F.: Supersound many-valued logics and Dedekind-MacNeille completions. Arch. Math. Log. 48(8), 719–736 (2009). https://doi.org/10.1007/s00153-009-0145-3
Bianchi, M., Montagna, F.: \(n\)-contractive BL-logics. Arch. Math. Log. 50(3–4), 257–285 (2011). https://doi.org/10.1007/s00153-010-0213-8
Blok, W., Pigozzi, D.: Algebraizable logics, Memoirs of The American Mathematical Society, vol. 77. American Mathematical Society (1989). tinyurl.com/o89ug5o
Blok, W.: Pretabular varieties of modal algebras. Stud. Logica. 39, 101–124 (1980). https://doi.org/10.1007/BF00370315
Castiglioni, J.L., Zuluaga Botero, W.J.: On finite MTL-algebras that are representable as poset products of archimedean chains. Fuzzy Sets Syst. 382, 57–78 (2020). https://doi.org/10.1016/j.fss.2019.03.015
Castiglioni, J.L., Zuluaga Botero, W.J.: Split exact sequences of finite MTL-chains. Rev. Un. Mat. Argentina 62(2), 295–304 (2021). https://doi.org/10.33044/revuma.1787
Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, vol. 7. Kluwer Academic Publishers (1999)
Cintula, P., Esteva, F., Gispert, J., Godo, L., Montagna, F., Noguera, C.: Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalencies. Ann. Pure Appl. Log. 160(1), 53–81 (2009). https://doi.org/10.1016/j.apal.2009.01.012
Cintula, P., Hájek, P., Noguera, C.: Handbook of Mathematical Fuzzy Logic, vol. 1 and 2. College Publications (2011)
Esakia, L., Meskhi, V.: 5 critical modal systems. Theoria 43, 52–60 (1977)
Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124(3), 271–288 (2001). https://doi.org/10.1016/S0165-0114(01)00098-7
Freese, R.S., McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, Lattices, Varieties: Volume II, vol. 268. American Mathematical Society (2022)
Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and The Foundations of Mathematics, vol. 151. Elsevier (2007)
Gispert, J.: Axiomatic extensions of the nilpotent minimum logic. Rep. Math. Log. 37, 113–123 (2003). tinyurl.com/nqsle2f
Jenei, S., Montagna, F.: A proof of standard completeness for Esteva and Godo’s logic MTL. Stud. Log. 70(2), 183–192 (2002). https://doi.org/10.1023/A:1015122331293
Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21, 110–121 (1967). https://doi.org/10.7146/math.scand.a-10850
Katoh, Y., Kowalski, T., Ueda, M.: Almost minimal varieties related to fuzzy logic. Rep. Math. Log. pp. 173–194 (2006). tinyurl.com/h8sc6j3
Kearnes, K., Willard, R.: Residually finite, congruence meet-semidistributive varieties of finite type have a finite residual bound. Proc. Am. Math. Soc. 127(10), 2841–2850 (1999). https://doi.org/10.1090/S0002-9939-99-05097-2
Kowalski, T.: Pretabular varieties of equivalential algebras. Reports Math. Log. 33, 3–10 (1999)
Maksimova, L.: Pretabular superintuitionist logic. Alg. Log. 11(5), 308–314 (1972). https://doi.org/10.1007/BF02330744
Maksimova, L.: Pretabular extensions of Lewis s4. Alg. Log. 14(1), 16–33 (1975). https://doi.org/10.1007/BF01668576
Mardaev, S.I.: Number of prelocally table superintuitionistic propositional logics. Alg. Log. 23(1), 56–66 (1984). https://doi.org/10.1007/BF01979699
Noguera, C.: Algebraic study of axiomatic extensions of triangular norm based fuzzy logics. Ph.D. thesis, IIIA-CSIC (2006)
Troelstra, A.: On intermediate propositional logics. Indagationes Mathematicae (Proceedings) 68, 141–152 (1965). https://doi.org/10.1016/S1385-7258(65)50019-6
Acknowledgements
This work has been partially supported by Istituto Nazionale di Alta Matematica (Indam).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Aguzzoli, S., Bianchi, M. (2024). Tabular and Pretabular Varieties of MTL-Algebras. In: Fahrenberg, U., Fussner, W., Glück, R. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2024. Lecture Notes in Computer Science, vol 14787. Springer, Cham. https://doi.org/10.1007/978-3-031-68279-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-68279-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68278-0
Online ISBN: 978-3-031-68279-7
eBook Packages: Computer ScienceComputer Science (R0)