Abstract
All the binomial lattices embed into \(Q_{\vee }(\mathbb {I})\), the complete lattice of sup-preserving endomaps of the unit interval—whose elements can be seen as continuous monotone paths from (0, 0) to (1, 1). This lattice is completely distributive. We give a general description of the complete congruences of completely distributive lattice s by means of an interior operator on the collection of closed subsets of an associated topological space. In particular, we show that these form a frame. We give a description of this frame for the unit interval lattice, showing that it is not a Boolean algebra nor a (co)spatial frame. For \(Q_{\vee }(\mathbb {I})\), we give a geometrical interpretation of these congruences by means of directed homotopies.
Research supported by the project LAMBDACOMB (ANR-21-CE48-0017).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aló, R.A., Frink, O.: Topologies of chains. Math. Ann. 171, 239–246 (1967). https://doi.org/10.1007/BF01362041
Balbes, R., Horn, A.: Order sums of distributive lattices. Pac. J. Math. 21(3), 421–435 (1967). https://doi.org/10.2140/pjm.1967.21.421
Bennett, M.K., Birkhoff, G.: Two families of Newman lattices. Algebra Universalis 32(1), 115–144 (1994). https://doi.org/10.1007/BF01190819
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511809088
Fajstrup, L., Goubault, E., Haucourt, E., Mimram, S., Raussen, M.: Directed Algebraic Topology and Concurrency. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-15398-8
Gehrke, M., van Gool, S.: Topological Duality for Distributive Lattices: Theory and Applications. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2024). https://doi.org/10.1017/9781009349680, prepublication available on arXiv: https://arxiv.org/abs/2203.03286
Gierz, G., Hofmann, K., Keimel, K., Lawson, J., Mislove, M., Scott, D.S.: Continuous lattices and domains, Encycl. Math. Appl., vol. 93. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511542725
Gouveia, M.J., Santocanale, L.: MIX \(\star \)-autonomous quantales and the continuous weak order. In: Desharnais, J., Guttmann, W., Joosten, S. (eds.) RAMiCS 2018. LNCS, vol. 11194, pp. 184–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02149-8_12
Grandis, M.: Directed Algebraic Topology, Models of Non-reversible Worlds. Cambridge University Press, Cambridge (2009)
Higgs, D.A., Rowe, K.A.: Nuclearity in the category of complete semilattices. J. Pure Appl. Algebra 57(1), 67–78 (1989). https://doi.org/10.1016/0022-4049(89)90028-5
Hoffmann, R.E.: Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications. Continuous lattices, Proc. Conf., Bremen 1979, Lect. Notes Math. 871, 159–208 (1981). https://doi.org/10.1007/BFb0089907
Hofmann, K.H.: Scs 61: the category cd of completely distributive lattices and their free objects. Seminar on Continuity in Semilattices 1(1) (1981). Article 62 https://repository.lsu.edu/scs/vol1/iss1/62
Hofmann, K.H., Lawson, J.D.: The spectral theory of distributive continuous lattices. Trans. Am. Math. Soc. 246, 285–310 (1978). https://doi.org/10.2307/1997975
Hofmann, K.H., Stralka, A.: The algebraic theory of compact Lawson semilattices. Applications of Galois connections to compact semilattices. Diss. Math. 137 (1976)
Johnstone, P.T.: Stone spaces, Camb. Stud. Adv. Math., vol. 3. Cambridge University Press, Cambridge (1986)
Lawson, J.D.: The duality of continuous posets. Houston J. Math. 5, 357–386 (1979)
Mac Lane, S.: Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, 2nd edn.. Springer-Verlag, New York (1998). https://doi.org/10.1007/978-1-4757-4721-8
Niefield, S.B., Rosenthal, K.I.: Spatial sublocales and essential primes. Topology Appl. 26, 263–269 (1987). https://doi.org/10.1016/0166-8641(87)90046-0
Raney, G.N.: Tight Galois connections and complete distributivity. Trans. Am. Math. Soc. 97, 418–426 (1961). https://doi.org/10.2307/1993380
Rowe, K.A.: Nuclearity. Can. Math. Bull. 31(2), 227–235 (1988). https://doi.org/10.4153/CMB-1988-035-5
Santocanale, L., Gouveia, M.J.: The continuous weak order. J. Pure Appl. Algebra 225, 106472 (2021). https://doi.org/10.1016/j.jpaa.2020.106472
Acknowledgment
The authors are thankful to Mai Gehrke for the numerous hints, for the pointers to the literature, and for a careful reading of a first draft of this manuscript. The authors are also thankful to the anonymous referees for the valuable suggestions by which a first version of this manuscript could be improved.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Calk, C., Santocanale, L. (2024). Complete Congruences of Completely Distributive Lattices. In: Fahrenberg, U., Fussner, W., Glück, R. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2024. Lecture Notes in Computer Science, vol 14787. Springer, Cham. https://doi.org/10.1007/978-3-031-68279-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-68279-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68278-0
Online ISBN: 978-3-031-68279-7
eBook Packages: Computer ScienceComputer Science (R0)