Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Complete Congruences of Completely Distributive Lattices

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2024)

Abstract

All the binomial lattices embed into \(Q_{\vee }(\mathbb {I})\), the complete lattice of sup-preserving endomaps of the unit interval—whose elements can be seen as continuous monotone paths from (0, 0) to (1, 1). This lattice is completely distributive. We give a general description of the complete congruences of completely distributive lattice s by means of an interior operator on the collection of closed subsets of an associated topological space. In particular, we show that these form a frame. We give a description of this frame for the unit interval lattice, showing that it is not a Boolean algebra nor a (co)spatial frame. For \(Q_{\vee }(\mathbb {I})\), we give a geometrical interpretation of these congruences by means of directed homotopies.

Research supported by the project LAMBDACOMB (ANR-21-CE48-0017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aló, R.A., Frink, O.: Topologies of chains. Math. Ann. 171, 239–246 (1967). https://doi.org/10.1007/BF01362041

    Article  MathSciNet  Google Scholar 

  2. Balbes, R., Horn, A.: Order sums of distributive lattices. Pac. J. Math. 21(3), 421–435 (1967). https://doi.org/10.2140/pjm.1967.21.421

    Article  MathSciNet  Google Scholar 

  3. Bennett, M.K., Birkhoff, G.: Two families of Newman lattices. Algebra Universalis 32(1), 115–144 (1994). https://doi.org/10.1007/BF01190819

    Article  MathSciNet  Google Scholar 

  4. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511809088

  5. Fajstrup, L., Goubault, E., Haucourt, E., Mimram, S., Raussen, M.: Directed Algebraic Topology and Concurrency. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-15398-8

    Book  Google Scholar 

  6. Gehrke, M., van Gool, S.: Topological Duality for Distributive Lattices: Theory and Applications. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2024). https://doi.org/10.1017/9781009349680, prepublication available on arXiv: https://arxiv.org/abs/2203.03286

  7. Gierz, G., Hofmann, K., Keimel, K., Lawson, J., Mislove, M., Scott, D.S.: Continuous lattices and domains, Encycl. Math. Appl., vol. 93. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511542725

  8. Gouveia, M.J., Santocanale, L.: MIX \(\star \)-autonomous quantales and the continuous weak order. In: Desharnais, J., Guttmann, W., Joosten, S. (eds.) RAMiCS 2018. LNCS, vol. 11194, pp. 184–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02149-8_12

    Chapter  Google Scholar 

  9. Grandis, M.: Directed Algebraic Topology, Models of Non-reversible Worlds. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  10. Higgs, D.A., Rowe, K.A.: Nuclearity in the category of complete semilattices. J. Pure Appl. Algebra 57(1), 67–78 (1989). https://doi.org/10.1016/0022-4049(89)90028-5

    Article  MathSciNet  Google Scholar 

  11. Hoffmann, R.E.: Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications. Continuous lattices, Proc. Conf., Bremen 1979, Lect. Notes Math. 871, 159–208 (1981). https://doi.org/10.1007/BFb0089907

  12. Hofmann, K.H.: Scs 61: the category cd of completely distributive lattices and their free objects. Seminar on Continuity in Semilattices 1(1) (1981). Article 62 https://repository.lsu.edu/scs/vol1/iss1/62

  13. Hofmann, K.H., Lawson, J.D.: The spectral theory of distributive continuous lattices. Trans. Am. Math. Soc. 246, 285–310 (1978). https://doi.org/10.2307/1997975

    Article  MathSciNet  Google Scholar 

  14. Hofmann, K.H., Stralka, A.: The algebraic theory of compact Lawson semilattices. Applications of Galois connections to compact semilattices. Diss. Math. 137 (1976)

    Google Scholar 

  15. Johnstone, P.T.: Stone spaces, Camb. Stud. Adv. Math., vol. 3. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  16. Lawson, J.D.: The duality of continuous posets. Houston J. Math. 5, 357–386 (1979)

    MathSciNet  Google Scholar 

  17. Mac Lane, S.: Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, 2nd edn.. Springer-Verlag, New York (1998). https://doi.org/10.1007/978-1-4757-4721-8

  18. Niefield, S.B., Rosenthal, K.I.: Spatial sublocales and essential primes. Topology Appl. 26, 263–269 (1987). https://doi.org/10.1016/0166-8641(87)90046-0

    Article  MathSciNet  Google Scholar 

  19. Raney, G.N.: Tight Galois connections and complete distributivity. Trans. Am. Math. Soc. 97, 418–426 (1961). https://doi.org/10.2307/1993380

    Article  MathSciNet  Google Scholar 

  20. Rowe, K.A.: Nuclearity. Can. Math. Bull. 31(2), 227–235 (1988). https://doi.org/10.4153/CMB-1988-035-5

    Article  MathSciNet  Google Scholar 

  21. Santocanale, L., Gouveia, M.J.: The continuous weak order. J. Pure Appl. Algebra 225, 106472 (2021). https://doi.org/10.1016/j.jpaa.2020.106472

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Mai Gehrke for the numerous hints, for the pointers to the literature, and for a careful reading of a first draft of this manuscript. The authors are also thankful to the anonymous referees for the valuable suggestions by which a first version of this manuscript could be improved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Santocanale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calk, C., Santocanale, L. (2024). Complete Congruences of Completely Distributive Lattices. In: Fahrenberg, U., Fussner, W., Glück, R. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2024. Lecture Notes in Computer Science, vol 14787. Springer, Cham. https://doi.org/10.1007/978-3-031-68279-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68279-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68278-0

  • Online ISBN: 978-3-031-68279-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics