Abstract
Shortening the argument (three group elements or 1536 / 3072 bits over the BLS12-381/BLS24-509 curves) of the Groth16 zk-SNARK for R1CS is a long-standing open problem. We propose a zk-SNARK Polymath for the Square Arithmetic Programming constraint system using the KZG polynomial commitment scheme. Polymath has a shorter argument (1408 / 1792 bits over the same curves) than Groth16. At 192-bit security, Polymath’s argument is nearly half the size, making it highly competitive for high-security future applications. Notably, we handle public inputs in a simple way. We optimized Polymath’s prover through an exhaustive parameter search. Polymath’s prover does not output \(\mathbb {G}_{2}\) elements, aiding in batch verification, SNARK aggregation, and recursion. Polymath’s properties make it highly suitable to be the final SNARK in SNARK compositions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We adopt the standard additive bracket notation: there is a type-3 pairing \(\mathbb {G}_{1} \times \mathbb {G}_{2} \rightarrow \mathbb {G}_{T}\) and \([x]_{\iota } = x [1]_{\iota }\), where \([1]_{\iota }\) is a fixed generator of \(\mathbb {G}_{\iota }\) for \(\iota \in \{1, 2, T\}\).
- 2.
There is currently no industry standard on the 192-level security level, so we just picked BLS24-509 as a well-known curve from the well-known BLS family. BLS24-509 satisfies \(|\mathbb {G}_{1}| = 512\), \(|\mathbb {G}_{2}| = 2048= 4 |\mathbb {G}_{1}|\), and \(|\mathbb {F}| = 256\) bits.
- 3.
Recently, [40] proved the knowledge-soundness of KZG-based zk-SNARKs under falsifiable assumptions in the ROM. However, their constructions add overhead. We will leave the use of their methods for future work.
- 4.
- 5.
Any small constant number c would suffice. A smaller c results in better efficiency, and \(c \ge 2\) is needed because we use SAP.
- 6.
- 7.
Extracting the committed polynomial from solely the polynomial commitment is possible in the AGM but impossible in the AGMOS. In AGMOS, one has to open the polynomial commitment before extractability becomes possible.
- 8.
See Eq. (15) for the deriviation of \(d_{\min }\) and \(d_{\max }\) in the general case.
- 9.
While \(Y = X^{\sigma }\) is a “virtual” indeterminate, we feel that writing Y instead of \(X^{\sigma }\) makes the proof more readable.
- 10.
More precisely, recall that \(\textsf{bnd}_{\textsf{a}}= 1\), \(\sigma = n + 3\), \(\alpha = -3\), \(\gamma = -5\), and \(d_{\min } = -5 n - 15\) and \(d_{\max } = 5 n + 7\) are as in Eq. (15). Given this setting, the exponents of X in \(\textsf{A}\), \(\textsf{B}\), \(\textsf{C}\) belong to the range \([d_{\min }, d_{\max }] = [\gamma \sigma , 2 n - 2 - \alpha \sigma ] = [-5, (n + 3), 5n + 7]\).
- 11.
Using the computations in Footnote (See footnote 10) and the default setting, we can find that the exponents of X in \(\varphi (X)\) belong to the range \([2 d_{\min }, 2 d_{\max }] = [-10 n - 30, 10 n + 14]\).
- 12.
The analysis of \(\varphi _{2 \gamma - \alpha } (X)\) and \(\varphi _{\gamma - \alpha } (X)\) is needed since, without it, one can only establish that \(\tilde{\mathbbm {z}}_{i} = \check{c}_{i} - 2 r_{\textsf{a}}(X) \check{a}_{i}\), that is, that it is a function of X. Hence, soundness would still hold but not necessarily special-soundness. On the other hand, fewer coefficients are critical, which will give more choices for \(\alpha \) and \(\gamma \). Some of the latter will result in better efficiency.
- 13.
According to https://keccak.team/sw_performance.html, hashing with SHA3 takes less than 15 cycles per byte, which gives less than 30 units (30000 cycles) on Skylake to hash 2000 bytes.
References
Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 3–33. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70700-6_1
Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On subversion-resistant SNARKs. J. Cryptol. 34(3), 17 (2021). https://doi.org/10.1007/s00145-021-09379-y
Ambrona, M., Beunardeau, M., Schmitt, A.L., Toledo, R.R.: aPlonK: aggregated PlonK from multi-polynomial commitment schemes. In: Shikata, J., Kuzuno, H. (eds.) IWSEC 2023. LNCS, vol. 14128, pp. 195–213. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41326-1_11
Aranha, D.F., Pagnin, E., Rodríguez-Henríquez, F.: LOVE a pairing. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 320–340. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-88238-9_16
Attema, T., Fehr, S., Klooß, M.: Fiat-shamir transformation of multi-round interactive proofs. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS, vol. 13747, pp. 113–142. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22318-1_5
Attema, T., Fehr, S., Klooß, M., Resch, N.: The fiat–shamir transformation of \(({\gamma }_{1},\ldots ,{\gamma }_{\mu })\)-special-sound interactive proofs. Tech. Rep. 2023/1945, IACR (2023). https://eprint.iacr.org/2023/1945
Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 02. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_19
Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_26
Belling, A., Soleimanian, A., Bégassat, O.: Recursion over public-coin interactive proof systems; faster hash verification. Cryptology ePrint Archive, Report 2022/1072 (2022). https://eprint.iacr.org/2022/1072
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_16
Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK parameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050 (2017). https://eprint.iacr.org/2017/1050
Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract). In: Stinson, D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_26
Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 1–18. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64378-2_1
Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 677–706. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing products and applications. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 65–97. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92078-4_3
Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: A toolbox for more efficient universal and updatable zkSNARKs and commit-and-prove extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 3–33. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92078-4_1
Campanelli, M., Gailly, N., Gennaro, R., Jovanovic, P., Mihali, M., Thaler, J.: Testudo: linear time prover SNARKs with constant size proofs and square root size universal setup. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 331–351. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-031-44469-2_17
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.P.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT’98. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1_6
Costello, C., Stebila, D.: Fixed argument pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 92–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14712-8_6
Dao, Q., Grubbs, P.: Spartan and Bulletproofs are simulation-extractable (for free!). In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part II. LNCS, vol. 14005, pp. 531–562. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30617-4_18
Di Crescenzo, G., Lipmaa, H.: Succinct NP Proofs from an Extractability Assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) Computability in Europe, CIE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg, Athens, Greece (2008)
Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-76578-5_11
Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96881-0_2
Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953
Gailly, N., Maller, M., Nitulescu, A.: SnarkPack: practical SNARK aggregation. In: Eyal, I., Garay, J.A. (eds.) FC 2022. LNCS, vol. 13411, pp. 203–229. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-18283-9_10
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96878-0_24
Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge from simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 581–612. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63715-0_20
Jager, T., Rupp, A.: The semi-generic group model and applications to pairing-based cryptography. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 539–556. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_31
Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_11
Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_20
Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 1–34. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-90453-1_1
Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10
Lipmaa, H.: A unified framework for non-universal SNARKs. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part I. LNCS, vol. 13177, pp. 553–583. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-97121-2_20
1. Lipmaa, H.: Polymath: Groth16 Is Not The Limit. Tech. rep., IACR (2024). https://eprint.iacr.org/2024/
Lipmaa, H., Parisella, R., Siim, J.: Algebraic group model with oblivious sampling. In: Rothblum, G.N., Wee, H. (eds.) TCC 2023, Part IV. LNCS, vol. 14372, pp. 363–392. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-48624-1_14
Lipmaa, H., Parisella, R., Siim, J.: Constant-Size zk-SNARKs in ROM from falsifiable assumptions. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024. LNCS, vol. 14656, pp. 34–64. Springer, Cham, Zürich, Switzerland (2024). https://doi.org/10.1007/978-3-031-58751-1_2
Lipmaa, H., Siim, J., Zajac, M.: Counting vampires: from univariate sumcheck to updatable ZK-SNARK. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp. 249–278. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22966-4_9
Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128. ACM Press (2019). https://doi.org/10.1145/3319535.3339817
Micali, S.: CS proofs (extended abstracts). In: 35th FOCS. pp. 436–453. IEEE Computer Society Press (1994). https://doi.org/10.1109/SFCS.1994.365746
Novakovic, A., Eagen, L.: On Proving Pairings. Tech. Rep. 2024/640, IACR (2024). https://eprint.iacr.org/2024/640
Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_13
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252. IEEE Computer Society Press (2013). https://doi.org/10.1109/SP.2013.47
Ràfols, C., Zapico, A.: An algebraic framework for universal and updatable SNARKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 774–804. Springer, Heidelberg, Virtual Event (2021). https://doi.org/10.1007/978-3-030-84242-0_27
Setty, S., Thaler, J., Wahby, R.: Customizable constraint systems for succinct arguments. Tech. Rep. 2023/552, IACR (2023). https://eprint.iacr.org/2023/552
Stachowiak, G.: Proofs of knowledge with several challenge values. Cryptology ePrint Archive, Report 2008/181 (2008). https://eprint.iacr.org/2008/181
Thaler, J.: Proofs, Arguments, and Zero-Knowledge, Foundations and Trends® in Privacy and Security, vol. 2. Now Publishers (2022)
Thorncharoensri, P., Huang, Q., Susilo, W., Au, M.H., Mu, Y., Wong, D.S.: Escrowed Deniable Identification Schemes. In: Slezak, D., Kim, T., Fang, W., Arnett, K.P. (eds.) FGIT-SecTech 2009. Communications in Computer and Information Science, vol. 58, pp. 234–241. Springer, Jeju Island, Korea (2009)
Xie, T., et al.: zkBridge: trustless cross-chain bridges made practical. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 3003–3017. ACM Press (2022). https://doi.org/10.1145/3548606.3560652
Acknowledgments
We thank Matteo Campanelli for useful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Lipmaa, H. (2024). Polymath: Groth16 Is Not the Limit. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14929. Springer, Cham. https://doi.org/10.1007/978-3-031-68403-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-68403-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68402-9
Online ISBN: 978-3-031-68403-6
eBook Packages: Computer ScienceComputer Science (R0)