Abstract
Multimedia streaming has become an essential aspect of contemporary life and the ever-growing demand for high-quality streaming has fostered the development of new video codecs and improvements in content delivery. Cloud computing, particularly cloud architectures, has played a pivotal role in this evolution, offering dynamic resource allocation, parallel execution, and automatic scaling-critical features for HTTP Adaptive Streaming applications. This paper presents two specialized containers designed for video encoding (using two implementations of H264: x264 that encodes in the CPU and H264 NVENC that also uses the GPU). These containers are deployed on a Kubernetes cluster with four GPUs. The experiments focus on the performance and resource consumption of the encoder containers under different Kubernetes cluster and replica configurations. The best setup shows a 12.7% reduction in encoding time for x264 and a 15.98% for H264 NVENC compared to the other configurations considered. Besides, the encoding time of H264 NVENC is reduced by a 3.29 factor compared to x264. To test the behavior in realistic scenarios, four videos were encoded at five different resolutions. The mean encoding time per segment is reduced by a 3.75 factor when using H264 NVENC compared to x264. These results hold significant implications for live streaming applications, particularly for low-latency use cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
NVIDIA Video Codec SDK, available at: https://developer.nvidia.com/video-codec-sdk.
- 3.
- 4.
See for instance https://support.google.com/youtube/answer/2853702.
References
Cheung, N.M., Fan, X., Au, O.C., Kung, M.C.: Video coding on multicore graphics processors. IEEE Signal Process. Mag. 27(2), 79–89 (2010). https://doi.org/10.1109/MSP.2009.935416
Dong, Y., Song, L., Xie, R., Zhang, W.: Real-time UHD video super-resolution and transcoding on heterogeneous hardware. J. Real-Time Image Proc. 17(6), 2029–2045 (2020). https://doi.org/10.1007/s11554-019-00913-7
Dong, Y., Zhang, X., Zhao, Y., Song, L.: A containerized media cloud for video transcoding service. In: International Conference on Consumer Electronics, ICCE 2018, , Las Vegas, Nevada, USA, pp. 1–4. IEEE (2018). https://doi.org/10.1109/icce.2018.8326347
Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L., Villari, M.: Open issues in scheduling microservices in the cloud. IEEE Cloud Comput. 3(5), 81–88 (2016). https://doi.org/10.1109/MCC.2016.112
Guanyu Gao, Wen, Y., Westphal, C.: Resource provisioning and profit maximization for transcoding in information centric networking. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 97–102. IEEE (2016). https://doi.org/10.1109/INFCOMW.2016.7562053
Gutiérrez-Aguado, J., Peña-Ortiz, R., García-Pineda, M., Claver, J.M.: Cloud-based elastic architecture for distributed video encoding: Evaluating H.265, VP9, and AV1. J. Netw. Comput. Appl. 171, 102782 (2020). https://doi.org/10.1016/j.jnca.2020.102782
Li, X., Darwich, M., Salehi, M.A., Bayoumi, M.: A survey on cloud-based video streaming services. In: Advances in Computers, vol. 123, pp. 193–244. Elsevier (2021). https://doi.org/10.1016/bs.adcom.2021.01.003
Moina-Rivera, W., Garcia-Pineda, M., Gutiérrez-Aguado, J., Alcaraz-Calero, J.M.: Cloud media video encoding: review and challenges. Multimedia Tools Appl. (2024). https://doi.org/10.1007/s11042-024-18763-2
Pääkkönen, P., Heikkinen, A., Aihkisalo, T.: Online architecture for predicting live video transcoding resources. J. Cloud Comput. 8(1), 1–24 (2019). https://doi.org/10.1186/s13677-019-0132-0
Pereira, R., Azambuja, M., Breitman, K., Endler, M.: An architecture for distributed high performance video processing in the cloud. In: 3rd International Conference on Cloud Computing, CLOUD 2010, Miami, Florida, USA, pp. 482–489. IEEE (2010). https://doi.org/10.1109/cloud.2010.73
Seufert, M., Egger, S., Slanina, M., Zinner, T., Hoßfeld, T., Tran-Gia, P.: A survey on quality of experience of http adaptive streaming. IEEE Commun. Surv. Tutor. 17(1), 469–492 (2015). https://doi.org/10.1109/COMST.2014.2360940
Vijay, S., Mann, P., Chaudhary, R., Rana, A.: Emerging trends in multimedia. In: Dutta, P., Chakrabarti, S., Bhattacharya, A., Dutta, S., Piuri, V. (eds.) Emerging Technologies in Data Mining and Information Security. LNNS, vol. 491, pp. 301–311. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-4193-1_29
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Salcedo-Navarro, A., Peña-Ortiz, R., Claver, J.M., Garcia-Pineda, M., Gutiérrez-Aguado, J. (2024). Cloud-Native GPU-Enabled Architecture for Parallel Video Encoding. In: Carretero, J., Shende, S., Garcia-Blas, J., Brandic, I., Olcoz, K., Schreiber, M. (eds) Euro-Par 2024: Parallel Processing. Euro-Par 2024. Lecture Notes in Computer Science, vol 14803. Springer, Cham. https://doi.org/10.1007/978-3-031-69583-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-69583-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-69582-7
Online ISBN: 978-3-031-69583-4
eBook Packages: Computer ScienceComputer Science (R0)