Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multimodal Adaptive Graph Evolution for Program Synthesis

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Abstract

Program synthesis constitutes a category of problems where the objective is to automatically produce computer programs that meet specified criteria. Among Genetic Programming algorithms, Cartesian Genetic Programming has been successfully used for a variety of function synthesis problems, such as circuit design, pattern analysis, and game playing. These problems are designed to work only on a single data type, for example, boolean values or entire images. Cartesian Genetic Programming cannot directly be applied to problems with multiple data types, which poses a great limitation, as more realistic programs should be able to deal with different data types. Mixed-Type Cartesian Genetic Programming is the only current extension of Cartesian Genetic Programming which allows for processing different data types. In this work, we present and study Multimodal Adaptive Graph Evolution, a multi-chromosome generalization of Cartesian Genetic Programming that groups functions by return type and constrains graph mutation based on node’s type coherence. We compare Multimodal Adaptive Graph Evolution to Mixed-Type Cartesian Genetic Programming on the Program Synthesis Benchmark Suite, showing that the representation and mutation constraints of Multimodal Adaptive Graph Evolution aid in the search of multimodal functions. Using Search Trajectory Networks, we find that Multimodal Adaptive Graph Evolution converges faster to a local or global minimum compared to Mixed-Type Cartesian Genetic Programming and explores the solution space more effectively by creating candidate solutions with lower semantic redundancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/camilodlt/PPSN_MAGE_PSB2_PBS.

References

  1. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.: Julia: A Fresh Approach to Numerical Computing (2015)

    Google Scholar 

  2. Brameier, M., Banzhaf, W., Banzhaf, W.: Linear Genetic Programming, vol. 1. Springer (2007)

    Google Scholar 

  3. Cava, W.G.L., et al.: Contemporary symbolic regression methods and their relative performance. arXiv preprint arXiv:2107.14351 (2021)

  4. Cortacero, K., et al.: Evolutionary design of explainable algorithms for biomedical image segmentation. Nat. Commun. 14(1), 7112 (2023). https://www.nature.com/articles/s41467-023-42664-x. Number: 1 Publisher: Nature Publishing Group

  5. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends® Program. Lang. 4(1–2), 1–119 (2017). Publisher: Now Publishers, Inc.

    Google Scholar 

  6. Harding, S., Graziano, V., Leitner, J., Schmidhuber, J.: MT-CGP: mixed type cartesian genetic programming. In: Proceedings of the 14th annual conference on Genetic and evolutionary computation (GECCO 2012), pp. 751–758. Association for Computing Machinery, New York (2012)

    Google Scholar 

  7. Harding, S., Leitner, J., Schmidhuber, J.: Cartesian genetic programming for image processing. In: Riolo, R., Vladislavleva, E., Ritchie, M.D., Moore, J.H. (eds.) Genetic Programming Theory and Practice X. Genetic and Evolutionary Computation, Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6846-2_3

  8. Helmuth, T., Kelly, P.: Psb2: the second program synthesis benchmark suite. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2021), pp. 785–794. Association for Computing Machinery, New York (2021)

    Google Scholar 

  9. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO 2015), pp. 1039–1046. Association for Computing Machinery, New York (2015)

    Google Scholar 

  10. Hu, T., Ochoa, G., Banzhaf, W.: Phenotype search trajectory networks for linear genetic programming. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds.) Genetic Programming, pp. 52–67. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-29573-7_4

  11. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)

    Article  Google Scholar 

  12. Kuepper, J., et al.: Cryptopt: verified compilation with randomized program search for cryptographic primitives. Proc. ACM Program. Lang. 7(PLDI), 1268–1292 (2023)

    Google Scholar 

  13. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016 (GECCO 2016), pp. 741–748. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2908812.2908898

  14. Lavinas, Y.C., Aranha, C., Ochoa, G.: Search trajectories networks of multiobjective evolutionary algorithms. In: Applications of Evolutionary Computation, EvoApplications. LNCS, vol. 13224, pp. 223–238. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02462-7_15

  15. Macret, M., Pasquier, P.: Automatic design of sound synthesizers as pure data patches using coevolutionary mixed-typed cartesian genetic programming. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 309–316. Association for Computing Machinery, New York (2014)

    Google Scholar 

  16. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46239-2_9

  17. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Program Evolvab. Mach. 21(1), 129–168 (2020)

    Article  Google Scholar 

  18. Nadizar, G., Medvet, E., Wilson, D.G.: Naturally interpretable control policies via graph-based genetic programming. In: Giacobini, M., Xue, B., Manzoni, L. (eds.) EuroGP 2024, EvoStar 2024, pp. 73–89. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-56957-9_5

  19. Ochoa, G., Malan, K.M., Blum, C.: Search tajectory networks of population-based algorithms in continuous spaces. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds.) Applications of Evolutionary Computation, pp. 70–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43722-0_5

  20. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks: a tool for analysing and visualising the behaviour of metaheuristics. Appl. Soft Comput. 109(C) (2021). https://doi.org/10.1016/j.asoc.2021.107492

  21. Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now? a large benchmark study of recent symbolic regression methods. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2018), pp. 1183–1190. Association for Computing Machinery, New York (2018)

    Google Scholar 

  22. Sobania, D., Schweim, D., Rothlauf, F.: A comprehensive survey on program synthesis with evolutionary algorithms. IEEE Trans. Evolution. Comput. 27(1), 82–97 (2023). Conference Name: IEEE Transactions on Evolutionary Computation

    Google Scholar 

  23. Spector, L., Klein, J., Keijzer, M.: The push3 execution stack and the evolution of control. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation (GECCO 2005), pp. 1689–1696. Association for Computing Machinery, New York (2005)

    Google Scholar 

  24. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the push programming language. Genet. Program Evolvab. Mach. 3(1), 7–40 (2002)

    Article  Google Scholar 

  25. De la Torre, C., Cortacero, K., Wilson, D.G., Cussat-Blanc, S.: Multimodal adaptive graph evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 2024), pp. To Appear. Association for Computing Machinery, New York (2024). https://doi.org/10.1145/3638530.3654202

  26. Whigham, P.A., et al.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, vol. 16, pp. 33–41. Citeseer (1995)

    Google Scholar 

  27. Wilson, D.G., Cussat-Blanc, S., Luga, H., Miller, J.F.: Evolving simple programs for playing Atari games. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2018). Association for Computing Machinery, New York (2018)

    Google Scholar 

Download references

Acknowledgments

This project used compute resources from the CALMIP project P21049. This work is supported by the AI Interdisciplinary Institute ANITI, funded by the French program “Investing for the Future - PIA3” under Grant agreement no. ANR-19-PI3A-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo De La Torre .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De La Torre, C., Lavinas, Y., Cortacero, K., Luga, H., Wilson, D.G., Cussat-Blanc, S. (2024). Multimodal Adaptive Graph Evolution for Program Synthesis. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15148. Springer, Cham. https://doi.org/10.1007/978-3-031-70055-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70055-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70054-5

  • Online ISBN: 978-3-031-70055-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics