Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pareto Landscape: Visualising the Landscape of Multi-objective Optimisation Problems

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15151))

Included in the following conference series:

  • 403 Accesses

Abstract

Fitness landscape is a valuable framework to understand optimisation problems. In single-objective optimisation, by displaying fitness landscape in a 3D space with the “height” representing the fitness (objective function value) of solutions, one can easily comprehend a variety of problem characteristics (optimality, multi-modality, level of ruggedness, etc.) and spatial features of the search space (basin, ridge, funnel, etc.). However, such straightforward visualisation cannot be directly extended to the multi-objective optimisation case in which a solution corresponds to a vector of values on multiple objective functions. In this paper, we make an attempt to address this issue. Instead of objective function values, we use the Pareto dominance relation to stratify solutions, introducing a method we term Pareto landscape for visualising multi-objective problem landscape. We compare Pareto landscape with well-established fitness landscape visualisation methods, including cost landscape, gradient field heatmap and PLOT, and show that Pareto landscape can capture problem characteristics that the other methods cannot do. Lastly, we present the Pareto landscapes of commonly used benchmark problems (ZDT, DTLZ, WFG and BBOB) in the domain, and discuss their features and characteristics.

Z. Liang and Z. Cui—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, the points to plot Pareto landscape are those evenly distributed on a \(500 \times 500\) grid unless specifically stated otherwise.

References

  1. Brockhoff, D., Auger, A., Hansen, N., Tušar, T.: BBOB biobj Visualizations (2021). https://numbbo.github.io/bbob-biobj/vis

  2. Brockhoff, D., Auger, A., Hansen, N., Tušar, T.: Using well-understood single-objective functions in multiobjective black-box optimization test suites. Evol. Comput. 30(2), 165–193 (2022)

    Article  Google Scholar 

  3. Brockhoff, D., Tušar, T.: GECCO 2023 tutorial on benchmarking multiobjective optimizers 2.0. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 1183–1212 (2023)

    Google Scholar 

  4. Custódio, A.L., Madeira, J.F.A.: MultiGLODS: global and local multiobjective optimization using direct search. J. Global Optim. 72(2), 323–345 (2018)

    Article  MathSciNet  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, Berlin (2005). https://doi.org/10.1007/1-84628-137-7_6

  7. Fieldsend, J.E., Alyahya, K.: Visualising the landscape of multi-objective problems using local optima networks. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1421–1429 (2019)

    Google Scholar 

  8. Fieldsend, J.E., Chugh, T., Allmendinger, R., Miettinen, K.: A feature rich distance-based many-objective visualisable test problem generator. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 541–549 (2019)

    Google Scholar 

  9. Fieldsend, J.E., Chugh, T., Allmendinger, R., Miettinen, K.: A visualizable test problem generator for many-objective optimization. IEEE Trans. Evol. Comput. 26(1), 1–11 (2021)

    Article  Google Scholar 

  10. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)

    Article  MathSciNet  Google Scholar 

  11. Fonseca, C.M.M.D.: Multiobjective genetic algorithms with application to control engineering problems. Ph.D. thesis, University of Sheffield (1995)

    Google Scholar 

  12. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  13. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  14. Ishibuchi, H., Akedo, N., Ohyanagi, H., Nojima, Y.: Behavior of EMO algorithms on many-objective optimization problems with correlated objectives. In: Proceedings of the IEEE Congress Evolutionary Computation, pp. 1465–1472 (2011)

    Google Scholar 

  15. Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In: Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN), pp. 91–100 (2010)

    Google Scholar 

  16. Jones, T., et al.: Evolutionary algorithms, fitness landscapes and search. Ph.D. thesis, Citeseer (1995)

    Google Scholar 

  17. Kerschke, P., Grimme, C.: An expedition to multimodal multi-objective optimization landscapes. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 329–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_23

    Chapter  Google Scholar 

  18. Kerschke, P., et al.: Towards analyzing multimodality of continuous multiobjective landscapes. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 962–972. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_90

    Chapter  Google Scholar 

  19. Köppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Substitute distance assignments in NSGA-II for handling many-objective optimization problems. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_55

    Chapter  Google Scholar 

  20. Li, M., Yang, S., Liu, X., Shen, R.: A comparative study on evolutionary algorithms for many-objective optimization. In: Proceedings of the 7th International Conference on Evolutionary Multi-criterion Optimization (EMO), pp. 261–275 (2013)

    Google Scholar 

  21. Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 232–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_19

    Chapter  Google Scholar 

  22. Liefooghe, A., Ochoa, G., Verel, S., Derbel, B.: Pareto local optimal solutions networks with compression, enhanced visualization and expressiveness. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 713–721 (2023)

    Google Scholar 

  23. Liu, Y., Ishibuchi, H., Nojima, Y., Masuyama, N., Shang, K.: A double-niched evolutionary algorithm and its behavior on polygon-based problems. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 262–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_21

    Chapter  Google Scholar 

  24. Ochoa, G., Liefooghe, A., Lavinas, Y., Aranha, C.: Decision/objective space trajectory networks for multi-objective combinatorial optimisation. In: Pérez Cáceres, L., Stützle, T. (eds.) EvoCOP 2023. LNCS, vol. 13987, pp. 211–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30035-6_14

  25. Ochoa, G., Malan, K.: Recent advances in fitness landscape analysis. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1077–1094 (2019)

    Google Scholar 

  26. Schäpermeier, L., Grimme, C., Kerschke, P.: One PLOT to show them all: visualization of efficient sets in multi-objective landscapes. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 154–167. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_11

    Chapter  Google Scholar 

  27. Schäpermeier, L., Grimme, C., Kerschke, P.: moPLOT website (2021). https://schaepermeier.shinyapps.io/moPLOT/

  28. Schäpermeier, L., Grimme, C., Kerschke, P.: Plotting impossible? surveying visualization methods for continuous multi-objective benchmark problems. IEEE Trans. Evol. Comput. 26(6), 1306–1320 (2022)

    Article  Google Scholar 

  29. Singh, H.K., Isaacs, A., Ray, T., Smith, W.: A study on the performance of substitute distance based approaches for evolutionary many objective optimization. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 401–410. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89694-4_41

    Chapter  Google Scholar 

  30. Volz, V., Naujoks, B., Kerschke, P., Tušar, T.: Single-and multi-objective game-benchmark for evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 647–655 (2019)

    Google Scholar 

  31. Wright, S., et al.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution pp. 356–366 (1932)

    Google Scholar 

  32. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miqing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Z., Cui, Z., Li, M. (2024). Pareto Landscape: Visualising the Landscape of Multi-objective Optimisation Problems. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15151. Springer, Cham. https://doi.org/10.1007/978-3-031-70085-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70085-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70084-2

  • Online ISBN: 978-3-031-70085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics