Abstract
Fitness landscape is a valuable framework to understand optimisation problems. In single-objective optimisation, by displaying fitness landscape in a 3D space with the “height” representing the fitness (objective function value) of solutions, one can easily comprehend a variety of problem characteristics (optimality, multi-modality, level of ruggedness, etc.) and spatial features of the search space (basin, ridge, funnel, etc.). However, such straightforward visualisation cannot be directly extended to the multi-objective optimisation case in which a solution corresponds to a vector of values on multiple objective functions. In this paper, we make an attempt to address this issue. Instead of objective function values, we use the Pareto dominance relation to stratify solutions, introducing a method we term Pareto landscape for visualising multi-objective problem landscape. We compare Pareto landscape with well-established fitness landscape visualisation methods, including cost landscape, gradient field heatmap and PLOT, and show that Pareto landscape can capture problem characteristics that the other methods cannot do. Lastly, we present the Pareto landscapes of commonly used benchmark problems (ZDT, DTLZ, WFG and BBOB) in the domain, and discuss their features and characteristics.
Z. Liang and Z. Cui—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this paper, the points to plot Pareto landscape are those evenly distributed on a \(500 \times 500\) grid unless specifically stated otherwise.
References
Brockhoff, D., Auger, A., Hansen, N., Tušar, T.: BBOB biobj Visualizations (2021). https://numbbo.github.io/bbob-biobj/vis
Brockhoff, D., Auger, A., Hansen, N., Tušar, T.: Using well-understood single-objective functions in multiobjective black-box optimization test suites. Evol. Comput. 30(2), 165–193 (2022)
Brockhoff, D., Tušar, T.: GECCO 2023 tutorial on benchmarking multiobjective optimizers 2.0. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 1183–1212 (2023)
Custódio, A.L., Madeira, J.F.A.: MultiGLODS: global and local multiobjective optimization using direct search. J. Global Optim. 72(2), 323–345 (2018)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, Berlin (2005). https://doi.org/10.1007/1-84628-137-7_6
Fieldsend, J.E., Alyahya, K.: Visualising the landscape of multi-objective problems using local optima networks. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1421–1429 (2019)
Fieldsend, J.E., Chugh, T., Allmendinger, R., Miettinen, K.: A feature rich distance-based many-objective visualisable test problem generator. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 541–549 (2019)
Fieldsend, J.E., Chugh, T., Allmendinger, R., Miettinen, K.: A visualizable test problem generator for many-objective optimization. IEEE Trans. Evol. Comput. 26(1), 1–11 (2021)
Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)
Fonseca, C.M.M.D.: Multiobjective genetic algorithms with application to control engineering problems. Ph.D. thesis, University of Sheffield (1995)
Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley (1989)
Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)
Ishibuchi, H., Akedo, N., Ohyanagi, H., Nojima, Y.: Behavior of EMO algorithms on many-objective optimization problems with correlated objectives. In: Proceedings of the IEEE Congress Evolutionary Computation, pp. 1465–1472 (2011)
Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In: Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN), pp. 91–100 (2010)
Jones, T., et al.: Evolutionary algorithms, fitness landscapes and search. Ph.D. thesis, Citeseer (1995)
Kerschke, P., Grimme, C.: An expedition to multimodal multi-objective optimization landscapes. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 329–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_23
Kerschke, P., et al.: Towards analyzing multimodality of continuous multiobjective landscapes. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 962–972. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_90
Köppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Substitute distance assignments in NSGA-II for handling many-objective optimization problems. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_55
Li, M., Yang, S., Liu, X., Shen, R.: A comparative study on evolutionary algorithms for many-objective optimization. In: Proceedings of the 7th International Conference on Evolutionary Multi-criterion Optimization (EMO), pp. 261–275 (2013)
Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 232–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_19
Liefooghe, A., Ochoa, G., Verel, S., Derbel, B.: Pareto local optimal solutions networks with compression, enhanced visualization and expressiveness. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 713–721 (2023)
Liu, Y., Ishibuchi, H., Nojima, Y., Masuyama, N., Shang, K.: A double-niched evolutionary algorithm and its behavior on polygon-based problems. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 262–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_21
Ochoa, G., Liefooghe, A., Lavinas, Y., Aranha, C.: Decision/objective space trajectory networks for multi-objective combinatorial optimisation. In: Pérez Cáceres, L., Stützle, T. (eds.) EvoCOP 2023. LNCS, vol. 13987, pp. 211–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30035-6_14
Ochoa, G., Malan, K.: Recent advances in fitness landscape analysis. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1077–1094 (2019)
Schäpermeier, L., Grimme, C., Kerschke, P.: One PLOT to show them all: visualization of efficient sets in multi-objective landscapes. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 154–167. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_11
Schäpermeier, L., Grimme, C., Kerschke, P.: moPLOT website (2021). https://schaepermeier.shinyapps.io/moPLOT/
Schäpermeier, L., Grimme, C., Kerschke, P.: Plotting impossible? surveying visualization methods for continuous multi-objective benchmark problems. IEEE Trans. Evol. Comput. 26(6), 1306–1320 (2022)
Singh, H.K., Isaacs, A., Ray, T., Smith, W.: A study on the performance of substitute distance based approaches for evolutionary many objective optimization. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 401–410. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89694-4_41
Volz, V., Naujoks, B., Kerschke, P., Tušar, T.: Single-and multi-objective game-benchmark for evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 647–655 (2019)
Wright, S., et al.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution pp. 356–366 (1932)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liang, Z., Cui, Z., Li, M. (2024). Pareto Landscape: Visualising the Landscape of Multi-objective Optimisation Problems. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15151. Springer, Cham. https://doi.org/10.1007/978-3-031-70085-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-70085-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70084-2
Online ISBN: 978-3-031-70085-9
eBook Packages: Computer ScienceComputer Science (R0)