Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Abstract

In recent years, Cross-Domain Recommendation (CDR) has drawn significant attention, which utilizes user data from multiple domains to enhance the recommendation performance. However, current CDR methods require sharing user data across domains, thereby violating the General Data Protection Regulation (GDPR). Consequently, numerous approaches have been proposed for Federated Cross-Domain Recommendation (FedCDR). Nevertheless, the data heterogeneity across different domains inevitably influences the overall performance of federated learning. In this study, we propose FedHCDR, a novel Federated Cross-Domain Recommendation framework with Hypergraph signal decoupling. Specifically, to address the data heterogeneity across domains, we introduce an approach called hypergraph signal decoupling (HSD) to decouple the user features into domain-exclusive and domain-shared features. The approach employs high-pass and low-pass hypergraph filters to decouple domain-exclusive and domain-shared user representations, which are trained by the local-global bi-directional transfer algorithm. In addition, a hypergraph contrastive learning (HCL) module is devised to enhance the learning of domain-shared user relationship information by perturbing the user hypergraph. Extensive experiments conducted on three real-world scenarios demonstrate that FedHCDR outperforms existing baselines significantly (Code available at https://github.com/orion-orion/FedHCDR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://jmcauley.ucsd.edu/data/amazon/.

References

  1. Zhu, F., Chen, C., Wang, Y., et al.: DTCDR: a framework for dual-target cross-domain recommendation. In: Proceedings of CIKM, pp. 1533–1542 (2019)

    Google Scholar 

  2. Liu, M., Li, J., Li, G., et al.: Cross Domain recommendation via bi-directional transfer graph collaborative filtering networks. In: Proceedings of CIKM, pp. 885–894 (2020)

    Google Scholar 

  3. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: Clustering, classification, and embedding. In: Proceedings of NIPS, vol. 19 (2006)

    Google Scholar 

  4. Ji, S., Feng, Y., Ji, R., et al.: Dual channel hypergraph collaborative filtering. In: Proceedings of SIGKDD, pp. 2020–2029 (2020)

    Google Scholar 

  5. Narang, S.K., Gadde, A., Ortega, A.: Signal processing techniques for interpolation in graph structured data. In: Proceedings of ICASSP, pp. 5445–5449 (2013)

    Google Scholar 

  6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Proceedings of NIPS, vol. 19 (2016)

    Google Scholar 

  7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of ICLR (2017)

    Google Scholar 

  8. Meihan, W., Li, L., Tao, C., et al.: FedCDR: federated cross-domain recommendation for privacy-preserving rating prediction. In: Proceedings of CIKM, pp. 2179–2188 (2022)

    Google Scholar 

  9. Chen, C., Wu, H., Su, J., et al.: Differential private knowledge transfer for privacy-preserving cross-domain recommendation. In: Proceedings of WWW, pp. 1455–1465 (2022)

    Google Scholar 

  10. Chen, G., Zhang, X., Su, Y., et al.: Win-win: a privacy-preserving federated framework for dual-target cross-domain recommendation. In: Proceedings of AAAI, vol. 37, no. (4), pp. 4149–4156 (2023)

    Google Scholar 

  11. Liu, W., Chen, C., Liao, X., et al.: Federated probabilistic preference distribution modelling with compactness co-clustering for privacy-preserving multi-domain recommendation. In: Proceedings of IJCAI, pp. 2206–2214 (2023)

    Google Scholar 

  12. Krichene W, Rendle S.: On sampled metrics for item recommendation. In: Proceedings of SIGKDD, pp. 1748–1757 (2020)

    Google Scholar 

  13. Voorhees, E.M.: The TREC question answering track. Nat. Lang. Eng. 7(4), 361–378 (2001)

    Article  MathSciNet  Google Scholar 

  14. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)

    Article  Google Scholar 

  15. He, X., Liao, L., Zhang, H., et al.: Neural collaborative filtering. In: Proceedings of WWW, pp. 173–182 (2017)

    Google Scholar 

  16. Wu, C., Wu, F., Cao, Y., et al.: FedGNN: federated graph neural network for privacy-preserving recommendation. arXiv preprint arXiv:2102.04925 (2021)

  17. Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263 (2017)

  18. Zheng, L., Lu, C.T., Jiang, F., et al.: Spectral collaborative filtering. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 311–319 (2018)

    Google Scholar 

  19. Wang, X., He, X., Wang, M., et al.: Neural graph collaborative filtering. In: Proceedings of SIGIR, pp. 165–174 (2019)

    Google Scholar 

  20. He, X., Deng, K., Wang, X., et al.: LightGCN: simplifying and powering graph convolution network for recommendation. In: Proceedings of SIGIR, pp. 639–648 (2020)

    Google Scholar 

  21. Wu, J., Wang, X., Feng, F., et al.: Self-supervised graph learning for recommendation. In: Proceedings of SIGIR, pp. 726–735 (2021)

    Google Scholar 

  22. Zou, D., Wei, W., Mao, X.L., et al.: Multi-level cross-view contrastive learning for knowledge-aware recommender system. In: Proceedings of SIGIR, pp. 1358–1368 (2022)

    Google Scholar 

  23. Li, P., Tuzhilin, A.: DDTCDR: deep dual transfer cross domain recommendation. In: Proceedings of WSDM, pp. 331–339 (2020)

    Google Scholar 

  24. Liu, W., Su, J., Chen, C., et al.: Leveraging distribution alignment via stein path for cross-domain cold-start recommendation. In: Proceedings of NIPS, vol. 34, pp. 19223–19234 (2021)

    Google Scholar 

  25. Cao, J., Sheng, J., Cong, X., et al.: Cross-domain recommendation to cold-start users via variational information bottleneck. In: Proceedings of ICDE, pp. 2209–2223 (2022)

    Google Scholar 

  26. Chai, D., Wang, L., Chen, K., et al.: Secure federated matrix factorization. IEEE Intell. Syst. 36(5), 11–20 (2020)

    Article  Google Scholar 

  27. Wu, C., Wu, F., Lyu, L., et al.: FedCTR: federated native ad CTR prediction with cross-platform user behavior data. ACM Trans. Intell. Syst. Technol. (TIST) 13(4), 1–19 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Guangdong Major Project of Basic and Applied Basic Researche (No. 2019B03030200245), the National Natural Science Foundation of China (62227808), and Shenzhen Science and Technology Program (Grant No. ZDSYS20210623091809029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H. et al. (2024). FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14941. Springer, Cham. https://doi.org/10.1007/978-3-031-70341-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70341-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70340-9

  • Online ISBN: 978-3-031-70341-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics